Curriculum of Diploma Programme

in

Textile Engineering

Department of Science, Technology and Technical Education (DSTTE), Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Diploma in Textile Engineering SBTE, Bihar

Semester – V
Teaching & Learning Scheme

Course	Category of	CourseTitles	Teaching & Learning Scheme (Hours/Week)							
Codes	course			oom ction	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
			L	Т						
2428501	PCC	Textile Testing and Quality Control	03	-	04	02	09	06		
2428502	PCC	Garment Technology	03	-	04	02	09	06		
2428503	PCC	Processing of Synthetic & their Blends	02	01	-	02	05	04		
2400504	OEC	Open Electives* / COE (Basic – Any One)	03	-	04	02	09	06		
2400505	NRC	Entrepreneurship Development & Start-ups (Common for All Programmes)	-	-	04	02	06	03		
2428506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Trainindg (Common for all programmes)	-	-	02	04	06	03		
2428507	PSI	Minor Project (Common for all programmes)	-	-	02	02	04	02		
	1	Total	11	1	20	16	48	30		

Note: Prefix will be added to Course Code if applicable (T for Theory, P for Practical Paper and S for Term Work) Legend:

- Cl: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.4
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- *: 3D Printing & Design/ Artificial Intelligence (Al)/ Drone Technology / Electric Vehicle / Industrial Automation & Control/ Robotics/ Internet of Things

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Diploma in Textile Engineering SBTE, Bihar

Semester - V Assessment Scheme

				Assessme	nt Scheme (Mark	(s)			ৰি
			Theory As (sessment FA)	Term work & :	_	Lab Ass	essment(LA)	Total Marks (TA+TWA+LA)
Course Codes	Category of course	Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	
2428501	PCC	Textile Testing and Quality Control	30	70	20	30	20	30	200
2428502	PCC	Garment Technology	30	70	20	30	20	30	200
2428503	PCC	Processing of Synthetic & their Blends	30	70	20	30	-	-	150
2400504	OEC	Open Electives* / COE (Basic – Any One)	30	70	20	30	20	30	200
2400505	NRC	Entrepreneurship Development & Start-ups (Common for All Programmes)	-	-	20	30	20	30	100
2428506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Training (Common for all programmes)	-	-	20	30	20	30	100
2428507	PSI	Minor Project (Common for all programmes)	-	-	10	15	10	15	50
	1	Total	120	280	130	195	110	165	1000

Note: Prefix will be added to Course Code if applicable (T for Theory, P for Practical Paper and S for Term Work)

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments

Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

*: 3D Printing & Design/ Artificial Intelligence (AI)/ Drone Technology / Electric Vehicle / Industrial Automation & Control/ Robotics/ Internet of Things

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities. the internal faculty should prepare checklist & rubrics for these activities.

A) Course Code : 2428501 (T2428501/P2428501/S2428501)

B) Course Title : Textile Testing and Quality Control

C) Pre-requisite Course(s) : Textile Fibres, Yarn Manufacture-I & II, Fabric Manufacture I & II, Textile Testing,

Garment Technology

D) Rationale :

In the textile industry, yarn is used as a raw material to produce fabric and garments. The quality of a garment depends on the fabric and yarn properties, their parameters and quality control testing. The textile diploma engineers must have relevant knowledge and skills related to yarn and fabric testing. This course will equip the students with the concepts, principles, and methods of testing yarns and fabric, which are helpful in the selection of raw materials for further processing of yarn and fabric, process control, and quality assurance.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Use relevant instrument for yarn twist and yarn strength measurement.
- **CO-2** Interpret the measured yarn evenness and yarn hairiness results.
- **CO-3** Predict fabric behavior, serviceability and fabric handle by testing fabric quality parameters.
- **CO-4** Apply principles of yarn and fabric testing for inspection and development of garment quality.
- **CO-5** Take corrective action for better performance of textile substrate using statistical techniques for analyzing test results.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)								
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-5 PO-6		PSO-1	PSO-2	
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long			
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning			
	Specific	Specific of Solutions		Sustainability and						
	Knowledge				Environment					
CO-1	3	-	ı	2	-	1	1			
CO-2	3	3	ı	2	-	1	1			
CO-3	3	3	3	2	2	1	2			
CO-4	3	3	-	2	2	1	1			
CO-5	3	3	3	3	2	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2428501	Textile Testing and Quality Control	03	-	04	02	09	06		

Legend:

Cl: Class room Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies).

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	ssessment So	cheme (Marl	ks)			
		Theory Assessment (TA)		Term Work & Self Learning Assessment (TWA)		Lab Assessment (LA)		A+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)	
2428501	Textile Testing and Quality Control	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro-projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2428501

Major Theory Session Outcomes (TSOs)	Units	Relevant COs
TSO1g. Establish the relationship between twist per	Unit-1.0 Yarn Testing	Number(s)
 TSO1a. Establish the relationship between twist per inch and count of yarn. TSO1b. Select relevant twist multiplier for manufacturing yarns for a given situation with justification. TSO1c. Explain the effects of twist on properties of given yarn/fabric. TSO1d. Select relevant twist measurement method for given yarn sample. TSO1e. Identify the relevant factor influencing strength test results of the given fiber with specification. TSO1f. Explain the working of given type of tensile testing machine with their principle. TSO1g. Explain principle and working procedure of Ballistic tester for measurement of yarn and fabric strength. TSO1h. Use count strength product (CSP) to compare two different given yarn. 	 1.1 Twist in Yarn 1.1.1 Twist direction, Twist Multiplier, Twist factor. 1.1.2 Function of twist in yarn structure, Twist and yarn strength relationship, effects of twist on fabric properties 1.1.3 Measurement of twist in single & plied yarn: Straighten fiber method (Ordinary twist tester and Continuous twist tester), Twist contraction method, Quadrant twist tester, Take up twist tester (Untwisting principle) 1.2 Yarn Strength. 1.2.1 Term related to yarn strength, Factors affecting the tensile Properties of textiles. 1.2.3 Principles of tensile testing machines – CRL, CRE and CRT Principles. 1.2.4 Pendulum Lever Principle, Inclined Plane Principle. 1.2.5 Determination of Yarn Strength: Single thread Strength tester, Uster Single thread strength tester, Instron tester, Scott Inclined plane tester, Lea Tester, Universal Testing Machine (UTM) 1.2.6 Ballistic Strength Tester. 1.2.7 Count – Strength Product (CSP). 	CO1
	1.2.8 Features of advanced strength tester: Tensojet and Tensorapid.	
TSO2a. Define the terms yarn Evenness, CV% and U%. TSO2b. Interpretate the results of irregularity tests. TSO2c.Identify the cause of irregularity in the yarn. TSO2d. Describe the effect of irregularity on the given yarn/fabric property. TSO2e. Explain Uster Classimat faults. TSO2f. Identify the causes of yarn hairiness for improvement of the given yarn quality. TSO2g. Describe effects of Hairiness of the given yarn and fabric properties. TSO2h. Describe with sketches the procedure to measure yarn hairiness by given method.	 Unit-2.0 Eveness Testing 2.1 Nature of Irregularity, Classification of variation, Limit of irregularity, Index of Irregularity, addition or reduction in Irregularity 2.2 Methods of measuring yarn Irregularity: (i) Cutting and weighing method; (ii) Visual examination method (ASTM); (iii) Capacitance principle: Fielden–Walker Evenness Tester, Uster Evenness Tester 2.3 Causes of Irregularity. Effects of Irregularity 2.4 Uster Classimat 2.5 Yarn Hairiness: Definition, Causes and effects, Yarn hairiness testing: (i) Microscopic method; (ii) Photoelectic method 	CO2
<i>TSO3a.</i> Select the relevant sampling method for testing the given fabric.	Unit- 3.0 Fabric Testing	CO3
TSO3b. Describe the procedure to determine construction parameter of the given fabric. TSO3c. Explain the effect of crimp on the given type of fabric. TSO3d. Describe the procedure to determine crimp of warp and weft of the given fabric using crimp tester. TSO3e. Describe the significance of fabric tensile strength. TSO3f. Describe with sketches the procedure to	 3.1 Quality particulars of Fabric, Sampling of fabric for testing fabric properties, Fabric Length and width and its measurement. 3.2 Measurements of Fabric construction parameters: Fabric Thickness, Fabrics weight, Warp Count, Weft Count, EPI, PPI, Cover Factor 3.3 Crimp of Yarn in Fabric: Crimp, Crimp Percentage and Crimp Amplitude. Effect of Crimp on fabric properties. Measurement of Crimp Percentage. W.I.R.A. Crimp tester 	

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs Number(s)
measure tensile, tear and bursting strength of the given fabric. TSO3g. Calculate drape coefficient of the given fabric using drape meter. TSO3h. Relate the effect of ends/inch, picks/inch and weave on drape of the given fabric. TSO3i. Explain the procedure to measure fabric stiffness, flexural rigidity and bending modulus of the given fabric. TSO3j. Describe the procedure to determine crease recovery of the given fabric. TSO3k. Explain Fabric wear, abrasion and serviceability. TSO3l. Explain with sketches the procedure to determine the abrasion and pilling resistance of the given fabric.	3.4 Fabric Tensile Strength testing: Introduction, Significance of fabric tensile strength, Fabric assistance and its effects on tensile strength of fabric, Methods of Measuring Tensile Strength using UTM: Ravelled Strip method, cut Strip method and Grab method 3.5 Tearing Strength testing: Tearing Strength testing, Methods of measuring the Tearing Strength: Tongue, tear test, Tongue Double rip tear test, Trapezoid tear, Ballistic tear test and Wing rip tear test. Fabric tear strength testing by Elmendorf tear strength tester 3.6 Bursting Strength testing: Bursting Strength testing, Methods of Measuring fabric Bursting strength 3.7 Fabric Stiffness, Handle and Drape: Introduction, fabric handle, Drape and its measurement by Drape—Meter, drape coefficient. Factors affecting fabric drape property, Stiffness, Bending Length, Flexural Rigidity and Bending Modulus Measurement of fabric stiffness by using Shirley' stiffness tester and the Heart—loop tests 3.8 Crease, Crease Resistance and Crease Recovery, Measurement of Crease recovery by Crease Recovery tester. 3.9 Fabric Wear and Serviceability: Fabric wear, abrasion and serviceability: Types of fabric abrasion Measurement of abrasion by Martindale abrasion tester. Assessment of abrasion test. Pilling, Measurement of pilling by pilling tester. Factors affecting of pill formation in fabric	
TSO4a. Explain air permeability, air resistance and air porosity of fabric and the factors affecting air permeability of a fabric. TSO4b. Explain basic concept of Wettability and flammability of the given fabric TSO4c. Describe with sketches the procedure to determine air permeability, water repellency and flammability of the given fabric. TSO4d. Explain the procedure to determine percentage shrinkage of the given fabric. TSO4e. Explain the procedure to measure Seam strength and seam efficiency of the given fabric. TSO4f. Use grey scale for grading the given fabric for colour change and Staining. TSO4g. Explain with sketches the procedure to measure given fastness properties of the given fabric.	 Unit- 4.0 Comfort Properties of Fabric & Garment Testing 4.1 Air Permeability: Air Permeability, air resistance and air porosity, Measurement of air permeability of fabric, Factors affecting air permeability of fabric 4.2 Water and Fabric Relationships: Water Permeability, Water absorbency, water repellency, shower-proof and water-proof, Basic Concept of wetting and water repellency 4.3 Methods of Water repellency and Water proofness testing: Wetting time test, Drop penetration test. Spray test, Hydrostatic head tests 4.4 Flammability of Fabric: Flammable Materials, Flame-resistant rating, Flame-proof, Flame-resistant, Inherently flame-proof material, Temporarily flame-proof material, Factors affecting flame-resistance; Measurement of flammability 4.5 Fabric Shrinkage, Testing for Shrinkage of fabric. 4.6 Seam strength and seam efficiency. 4.7 Testing of garment accessories: Sewing threads, 	CO3, CO4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	Button, Zipper, Fusible interlining, Elastic tape. 4.8 Grey Scale for Colour Change and Staining Testing of fabric fastness to colour and staining: Fastness to Washing, Fastness to rubbing, Drycleaning, Fastness to Lighting, Fastness to Perspiration	
TSO5a. Describe the concept of quality control in textile. TSO5b. State the advantages of Statistical Quality Control. TSO5c. List down the causes of Variation in Quality. TSO5d. Enumerate Importance of SQC in textile processes and sub-processes. TSO5e. Explain the techniques of Statistical Quality Control. TSO5f. Apply quality control charts in textile industry. TSO5g. Calculate mean deviation, standard deviation. C.V. %, Variance.	 Unit- 5.0 STATISTICAL QUALITY CONTROL 5.1 Objectives of Quality Control, Importance of quality and quality control, Advantages of Statistical Quality Control 5.2 Causes of Variation in Quality: Chance causes and Assignable causes 5.3 Techniques of S.Q.C.: Process Control and Product control 5.4 Quality Control Chart: concepts, Use of control chart, Advantages of using quality control charts. Control Limits, Types of Control charts: Control chart for variables & Control charts for Attributes. Application of Quality control charts in Textile Industry 5.5 Product control, Importance of Quality control in textile, Mean deviation, Standard deviation and C.V.% 	CO5

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2428501

Pra	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
	Determine the direction of twist in the given yarn. Use twist tester to determine amount of twist in the given yarn.	1.	Determination of Twist in single/plied yarn by using twist tester	CO1
LSO 2.1.	Use tensile strength tester for measurement of single thread strength of yarn.	2.	Determination of strength of single yarn by using tensile strength tester	CO1, CO5
LSO 2.2.	Determine work of rupture for the given yarn.			
LSO 2.3.	Determine the C.V.% of strength of the yarn.			
	Use Lea strength tester for measurement of lea strength of yarn. Calculate CSP of yarn and C.V. % of yarn.	3.	Determination of Bundle strength of yarn using Lea Strength Tester	CO1, CO5
	Grade the given yarn by ASTM Yarn appearance method.	4.	Visual examination of yarn for evenness and grading	CO1
	Use Evenness tester for Measurement of Yarn Evenness. Analyze the result of evenness tester.	5.	Determination of the yarn and roving evenness by using evenness tester	CO2, CO5
	Use scale, weighing balance, thickness tester, to determine fabric dimensions – Length, width, thickness, weight of fabric.	6.	Measurement of construction parameter of fabric	CO3
LSO 6.2.	Use Counting glass, GSM cutter, Quadrant balance and crimp tester to determine fabric construction parameter.			

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 7.1. Prepare samples for Ravelled strip, Cut strip and Grab test methods for tensile strength test. LSO 7.2. Use tensile Strength Tester to determine tensile strength of given fabric sample.	7.	Determination of tensile strength of fabric by using fabric tensile strength tester	CO3
LSO 8.1. Prepare sample for single tongue, double tongue, Trapezoid, Nail, snage method used for tear strength test. LSO 8.2. Determine tearing strength of given fabric by fabric tearing strength tester.	8.	Determination of the fabric tearing strength	CO3
LSO 9.1. Use Bursting strength tester to determine bursting strength of given fabric sample.	9.	Measurement of Bursting strength of fabric	CO3
LSO 10.1. Use drape meter to measure fabric drape. LSO 10.2. Determine drape coefficient of given fabric.	10.	Determination of draping Quality of fabric by using drape meter	CO3
LSO 11.1. Use stiffness tester to measure stiffness property of fabric.	11.	Determination of bending length, flexural rigidity and bending modulus of fabric using stiffness tester	CO3
LSO 12.1. Use crease recovery tester to measure crease recovery angle of fabric.	12.	Measurement of Crease recovery angle of fabric	CO3
LSO 13.1. Use abrasion tester (Martindale) to measure Abrasion resistance of fabric.	13.	Measurement of abrasion resistance of fabric	CO3
LSO 14.1. Use pilling tester to analyze pilling resistance of fabric.	14.	Analysis of pilling resistance of fabric	CO3
LSO 15.1. Use Spray test machine to measure the wettability of fabric.	15.	Determination of the Wettability (water resistance) of fabric by using spray Test	CO3, CO4
LSO 16.1. Determine the percentage shrinking of the given fabric. LSO 16.2. Use scale to measure shrinkage of fabric.	16.	Determination of the percentage shrinking of the given fabric	CO3, CO4
LSO 17.1. Use tensile strength tester to evaluate seam strength.	17.	Determination of seam strength	CO3, CO4
LSO 18.1. Determine colour fastness to Rubbing, Washing and Dry-cleaning using crock mater, Washing fastness tester and Laundro meter. LSO 18.2. Use AATCC scale to measure colour fastness properties.	18.	Determination of Colour, Rubbing, Washing and Dry-cleaning fastness of fabric	CO3, CO4

- **L) Suggested Term Work and Self-Learning: S2428501** Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions / Problems / Numerical / Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Conduct a market survey to collect different types of yarns (natural and man-made origin) and prepare a comprehensive report based their yarn count, type of twist, application and price.
 - ii. Conduct a library survey and prepare a report on the different types of tensile strength testing machine used for yarn and fabric.
 - iii. Prepare table containing norms published by different research organizations for different yarn properties of various types of yarns.
 - iv. Prepare a table for construction particulars of various types of fabrics using journals and textile books.

- v. List down the various test and testing machines used for fabric testing.
- vi. List down the statistical tools used in textile testing.

b. Micro Projects:

- i. Yarn Twist: Collect different yarn samples used for different applications like hosiery, warp, weft, voile, fancy yarn, crepe yarn. Identify direction of twist and calculate amount of twist and twist multiplier. Prepare a chart for the same.
- ii. **Yarn Evenness:** Collect yarn samples for different faults like thick, thin, neps and prepare a chart along with the norms for imperfections of at least 5 different counts.
- iii. **Yarn Evenness:** Collect and prepare a chart of yarn samples for different count and find out U% of the same using Uster evenness tester.
- iv. **Yarn Hairiness:** Collect 10 yarn samples from course to fine count, measure yarn hairiness by optical method. Plot a graph of hairiness parameter against count and interpret the result.
- v. **Tensile Strength:** Collect 5 fabric samples of different quality and measure their tensile strength and prepare a chart for test results.
- vi. **Fabric stiffness** Collect 5 samples of fabrics of different quality and check bending length, flexural rigidity and bending modulus and present the results in a tabular format.
- vii. **Air and water permeability** Prepare a dynamic power point presentation on testing of water and air permeability of fabric and present the same in the classroom.
- viii. **Fabric strength** Collect fabric samples of different quality and test their tensile strength, tearing strength and bursting strength and prepare a comparative chart for the results.
- ix. **Testing of Fabric quality**: Collect 5 fabric different samples and calculate ends/inch, picks/inch, warp count, weft count and fabric cover factor from 10 different places of each sample and analyze the data for variation using statistical tools.

c. Other Activities:

- i. Seminar Topics:
 - Modern machineries used for Tensile Strength testing of Fibre, Yarn and Fabric
 - Uster Yarn Faults Classification system Classimat
 - Tear Testing of Fabrics
 - Comfort Properties of fabric
- Visits: Visit nearby Research Organization or Industry having Textile Testing Laboratory. Prepare report of visit with special comments on Textile Testing Laboratory equipment and technique used, material used and cost of equipment.
- iii Self-Learning Topics:
 - Testing of Technical Textiles materials
 - Testing of Textured Yarn
 - Binomial, Poisson and Normal distribution
 - Colour Fastness of fabric to light and perspiration
 - Stiffness testing of limp fabric using Heart–loop test
 - Software for statistical application

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalu	ation Matrix			
	Theory Asses	sment (TA)**	Term Wor	k Assessme	ent (TWA)	Lab Assessment (LA)#		
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA) Term Work& Self Learning Assessment					•	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	25%	25%	20%	20%	20%	20%	20%	
CO-2	10%	10%	20%	20%	20%	10%	20%	
CO-3	25%	25%	20%	20%	20%	25%	20%	
CO-4	20%	20%	20%	20%	20%	25%	20%	
CO-5	15%	15%	20%	20% 20% 20%			20%	
Total	30	70	20 20 10			20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentages given are approximate.

- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Yarn Testing	12	CO1	16	4	6	6
Unit-2.0 Eveness Testing	06	CO2	10	3	3	4
Unit- 3.0 Fabric Testing	12	CO3	18	5	7	6
Unit- 4.0 Comfort Properties of Fabric & Garment Testing	10	CO3, CO4	14	4	5	5
Unit- 5.0 Statistical Quality Control	08	CO5	12	4	4	4
Total Marks	48	-	70	20	25	25

Note: Similar table can also be used to design class/mid-term/internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant			
S.	Laboratory Practical Titles	COs		mance	Viva-
No.	Laboratory Fractical Fittes	Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
1.	Determination of Twist in single/plied yarn by using twist tester	CO1	40	50	10
2.	Determination of strength of single yarn by using tensile strength tester	CO1, CO5	40	50	10
3.	Determination of Bundle strength of yarn using Lea Strength Tester	CO1, CO5	40	50	10
4.	Visual examination of yarn for evenness and grading	CO1	40	50	10
5.	Determination of the yarn and roving evenness by using evenness tester	CO2, CO5	40	50	10
6.	Measurement of construction parameter of fabric	CO3	40	50	10
7.	Determination of tensile strength of fabric by using fabric tensile strength tester	CO3	40	50	10
8.	Determination of the fabric tearing strength	CO3	40	50	10
9.	Measurement of Bursting strength of fabric	CO3	40	50	10
10.	Determination of draping Quality of fabric by using drape meter	CO3	40	50	10
11.	Determination of bending length, flexural rigidity and bending modulus of fabric using stiffness tester	CO3	40	50	10
12.	Measurement of Crease recovery angle of fabric	CO3	40	50	10
13.	Measurement of abrasion resistance of fabric	CO3	40	50	10
14.	Analysis of pilling resistance of fabric	CO3	40	50	10
15.	Determination of the Wettability (water resistance) of fabric by using spray Test	CO3, CO4	40	50	10
16.	Determination of the percentage shrinking of the given fabric	CO3, CO4	40	50	10
17.	Determination of seam strength	CO3, CO4	40	50	10
18.	Determination of Colour, Rubbing, Washing and Dry-cleaning fastness of fabric	CO3, CO4	40	50	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/ Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/ outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	Automatic Twist Tester	 Micro-controller based electronic twist tester Motor driven fully automatic instrument Alphanumeric backlit LED display unit Suitable for S/Z type of twisted yarns Electronic sensor for sensing zero (starting) position Tension weight up to 20 grams adjustable in step of 5 grams. 	1
2.	Double/plied yarn twist tester / Digital Twist Tester	Yarn test length 25 mm to 500 mm adjustable, capable for single and double yarn, S / Z switch for selection of twist type, TPM range: up to 9999 TPM (Digital display), TPI Range: up to 250	1
3.	Single Thread Strength Tester (DIGITAL) (Lab Model)	Capacity of the Tester 30 Kg, Acc. 5 grams, Speed of Traverse 300 mm/min. Motor ¼ H.P. 230 volts AC. Gripping Distance Minimum – 8" and Maximum -20", Elongation upto 100% Protection from Over traverse, complete with all accessories	2
4.	Digital Tensile Tester (Interfaced with a PC)	For Single Fibre and yarn and Fabric Strength / Elongation test. Compressive force up 1000 lbs. The electromechanical universal testing system has a capacity of 5 kg (1125 lb) with a speed range of between 0.5-500 mm/min.	2, 7, 17
		OR	
	Tensile strength tester: For yarn and fabric	Maximum capacity 250 kg with 100 grams accuracy, work on CRE principle, Digital control panel, maximum jaw separation 450 mm & minimum jaw separation 25 mm, 1" and 4" supplied to conduct grab test and seam slippage, complete with all accessories-templates, 6 mm gauge etc, L 27.5" X D 15.5" X H 65" to meet the standard ASTM D 5035, ASTM D 1578, ASTM D 5034, ASTM D-434, BSEN 1002-3, BS-1610, DIN-51221.	
		OR	
	Universal Testing Machine (UTM)	Tensile Tester Universal: 1000 Kgs Capacity Equipment is required for the determination of tensile properties of fibre, yarn & fabrics. Basic feature: Twin column Tensile tester electronic suitable for carrying out test for tensile properties of fibre, yarn and fabrics as per IS 235-1969, ASTM 5034, ISO 13934 part I & II with facility for testing lea / skein strength as per IS 1671. Tear strength ASTM 5587, ISO 13937 part 2 – 4 Seam slippage test as per ASTM D 434 / 1683 & ISO 13936 part 1 & 2: Peel bond strength ASTM D 2724, ISO 6939, 2062 etc. Desirable: capability to test Textile Accessories viz.: Zippers, Elastic etc. Fully automatic computer controlled static tensile tester operating on the principle of constant rate of extension	
5.	Lea Strength Tester	Capacity: 0 - 250 kg x 0.5 kg, 0 - 100 kg x 0.2 kg, 0 - 50 kg x 0.1 kg Traverse Speed: 300 mm/minute, Minimum Separation of Grips: 20 mm Dimensions of Lea: 54" (Imperial), Metric: 100 cm	3
6.	Wrap Reel	Automatic for preparing leas at a time with auto stop. 54 inch/1 meter girth sturdy reel assembly for evaluating all count systems like Ne, Nm, Tex, Denier, etc.	3
7.	Weighing balance / Electronic balance	Electronic balance with the scale range of 0.001 grams to 500 grams. Pan size 100 mm; response time 3-5 sec; power requirement as per standard Indian power supply ~250 V	2,3,6,10
8.	Yarn Appearance Board / Black board wrapping	Instrument consists of a yarn wrap board as per ASTM D 2255 Instrument should be built on rigid heavy base with standard	4

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
	machine	finish. Instrument and its all components should be corrosion resistant. ASTM standard photo graph as per ASTM D 2255	
9.	Evenness tester based on capacitance principle	Fielden-Walker evenness tester based on capacitance principle	5
		OR	
	Uster evenness tester	Capacitive measurement of mass variations and imperfections in yarn, roving and sliver of staple fibers. • Measurement of foreign matters.	
		 Collection, evaluation and storage of measurement values. Automatic check of all measured values, diagrams and spectrograms. Yarn classification based on the USTER® STATISTICS 	
10.	CLASSIMAT (Yarn Fault Finding Equipment)	Control Unit with installed software Printer: Flat screen, Keyboard and PC-mouse Lab Control Unit with Microsoft Windows Operating system and specific hardware and software: Backup	4,5
		Unit – 2nd Hard disk of identical capacity, Network card integrated, Climate Sensor including cable, Dongle, Module complete	
11.	Measuring table, scale, tape	Measuring table of 5-meter length, scale of 0.1mm,	6
12.	Digital Fabric thickness tester	 Fabric Thickness measurement at various loads For carpet testing with weight set 20 to 2000 grams/cm² Foot pressure should be in Range of 400 to 412 mm² Should be able to measure from 0- 25 mm Precision level should be up to 0.01 mm (LC= 0.01 mm) Able to provide data for plotting Load Thickness Curve showing compression and recovery of fabric at various loads 	6
13.	Fabric GSM cutter	Fabric GSM cutter and weighing balance with LC = 0.01 mm.	6
14.	Quadrant balance	Quadrant balance	6
15.	Counting Glass/ Pick Glass	Counting Glass/ Pick Glass to determine ends and picks in fabrics. • 10x – 1" x 1" with Pointer with carrying case 1 No • 10x - 20 mm x 20 mm with Pointer with carrying case 1 No Packaging Type: Corrugated Box Magnifying Capacity: 10x Zoom LED Light	6
	Automatic thread counter / Digital Traverse thread counter	40x travelling microscope is attach to magnify the fabrics. Inbuilt reference line inside the travelling microscopes eases accurate checking. Two filament bulbs from bottom to view the sample. Complete with all accessories along with two templates. Slot size: 10 mm, 20 mm, and 50 mm Slot size: ¼", ½" and 1". Standards: ASTM D 3775-98, ISO 7211, BSEN 1049.	
16.	Crimp tester / Shirley Yarn Crimp Tester	Maximum test length: 400 mm Maximum elongation: 125 mm Tension load: 3 g. to 20 g. (Crimp tester having 0.1 mm LC).	6
17.	Digital Elmendorf Tearing strength tester	Elmendorf Tearing Tester is based on Elmendorf method to measure tearing strength of plastic films, textile, woven and non-woven materials. Lab think tear tester is a user-friend instrument and test range is from 200gf to 6400gf with suitable pendulum.	8

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/
			Practical Number
18.	Fabric Bursting	Equipment Bursting Capacity: 0 – 70 kg/cm ² (Maximum capacity	9
	strength tester.	70 kgs)	
		Pneumatically control sample clamping with digital control.	
		Standard: to meet the standards BS 3424/3137, ASTM D	
19.	Drape meter/ Fabric	3786/ASTM D 774, ISO 2758/2559/3303/3669 Fabric Drape Tester - Drape Meter - Totally automatic system	10
15.	Drape tester	Application	10
		Fabric Drape Tester or Drape Meter, capable of measure and	
		calculate the coefficient of drape of fabrics using image processing	
		technology. It can be used to test the drape property of all kinds of	
		fabrics. Standards BS EN 9073, BS 5058, ERT 90-1, AFNOR G07-	
20	Stiffness tester	109, UNI 8279, FZ/T01045 Shirley Fabric stiffness tester	11
20.	Stillless tester	Silliney Fabric Stilliness tester	11
21.	Crease Recovery tester	Determine the crease recovery angle of any fabrics,	12
		10 N + 9.63 N weight supplied as per ISO standard,	
		500 gm weight as per AATCC standard,	
		Two templates for ISO & AATCC standard supplied with complete accessories.	
22	Martindale Fabric abrasion	Martindale Abrasion Resistant Tester: 4 Station	13
	tester	Working pressure on test specimen (Upholstery): 9 kPa (Apparel), 12	
		kPa (Upholstry)	
		Loading facility: 200 and 400 grams	
23.	Fabric pilling tester.	Digital Pilling Tester: 2 stations	14
		No. of Boxes: minimum 2	
		Size of inner wooden box (before Cork Lining) :(235× 235 mm) + 5 mm	
		Thickness of cork lining: 3.2 mm	
		Speed of rotation of boxes: 60 rpm (+ 2rpm)	
		Size of test specimen: (125×125) mm	
		Digital Counter (Preset Type): 0.99999/LC-1	
		ASTM D 3512/ 4970/ 5362, BS 5811, ISO 12945 standards	
		OR	
	Martindale Abrasion cum	Instrument consists of four testing plates on which the abrading	
	Pilling Tester	fabrics is attached, these four-testing table are mounted on the base plate of the instrument. There is revolving plate, which	
		revolves with the help of three cranks, pegs & motor. There are	
		four sleeves attached on the revolving plate. Testing is carried out	
		as per: IS 12673, ASTM D:4966, ASTM D:4970, BS 5690	
24.	Spray Tester / Wettability	Spray Tester/ Wettability tester with Scale of AATCC standard.	15
	tester		
25.	Crock meter	Capable of determining the Colour Fastness of Textile to Dry or	18
		Wet rubbing as per ISO/European Standard ISO 108, and AATCC	
		8/165 & BS EN 20105.	
26.	Washing fastness	Washing Fastness Tester (Fully SS) With Digital Temperature	18
	tester	Indicator and Controller. With Digital Timer and Alarm. As per	
27.	Laundararastar	Standard: ISO 105, AATCC 28,61,86,132, BS: 100 - Temperature range – upto 80 °C	18
27.	Launderometer	- Number of beakers (jars) – 8 with capacity 500±50 ml	10
		- Corrosion resistant	
		- Carriage RPM – 40±2	
		Standards: IS / ISO: 105 C10	
28.	Grey Scale for Change in		18
	Colour- SDC/AATCC	Assessment of colour change occurring in fastness tests as in ISO	
		105-A02	

S. No.	Name of Equipment, Tools and Software		-	Broad Specifications	Relevant Experiment/ Practical Number
29.	Grey Scale SDC/AATCC	for	Staining-	Grey Scale for Staining- SDC/AATCC: Assess the amount of staining occurring on adjacent undyed fabrics	18
				during fastness tests as in ISO 105-A03.	

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Principles of Textile Testing	Booth, J. E.	CBS publishers and distributors private ltd. 1996. New Delhi India. ISBN 10:81-239-0515-7; ISBN 13:9788123905150
2.	Physical Testing of Textiles	Saville, B.P.	Wood head publishing limited -2002 Cambridge England. ISBN :1 85573 367 6 CRC press ISBN: 0-8493-0568-3.
3.	Practical Guide to Textile Testing	Amutha, K.	Wood head Publishing (India), New Delhi India.2016. ISBN: 978-93-85059-07-0
4.	Fabric Testing	Edited by Jinlian HU	The Textile Institute, Woodhead Publishing Ltd., Cambridge, England, 2008. ISBN: 978-1-84569-297-1
5.	Physical Properties of Textile Fibres	Morton, W.E; Hearle, J.W.	Wood head publishing 2008. ISBN 978-1-84569-220-9.
6.	Textile Testing Physical, Chemical and Microscopical	Skinkle, John H.	Chemical Publishing Co Inc (1940) ASIN: B0010MN6VS
7.	Testing & Quality Management	Kothari, V.K.	IAFL, New Delhi 1999 ISBN 819010330X, 9788190103305
8.	Statistics for textile engineers	J. R. Nagla	Woodhead Publishing Ltd, ISBN: 978- 1782420675

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/textiletesting
- 2. https://www.scribd.com/doc/Textile-Testing
- 3. http://textilelearner.blogspot.in/
- 4. https://textilestudycenter.com/
- 5. http://www.textileschool.com/
- 6. https://study.com/academy/topic/textile-fibres-fabrics.html
- 7. https://textilestudycenter.com/textile-books-free-donwload/
- 8. https://textilelearner.blogspot.in/2013/03/yarn-twist-relationship-betweenyarn.html
- 9. https://nptel.ac.in/courses/116102029/64
- 10. https://www.slideshare.net/fahim55/yarn-twist
- 11. https://textilelearner.blogspot.in/2013/03/yarn-twist-relationship-betweenyarn.html
- 12. https://nptel.ac.in/courses/116102029/37
- 13. https://textilelearner.blogspot.com/2012/05/yarn-evenness-unevenness-irregularity.html
- 14. https://textilestudycenter.com/yarn-evenness-ii-classification/
- 15. https://nptel.ac.in/courses/116102029/29
- 16. https://nptel.ac.in/courses/116102029/38
- 17. https://www.scribd.com/doc/201648794/SITRA-NORMS-SPINNING-MILLS-2010
- 18. https://nptel.ac.in/courses/116102029/32

- 19. https://textilelearner.blogspot.com/2012/05/yarn-evenness-unevennessirregularity.html
- 20. https://nptel.ac.in/courses/116102005/13
- 21. https://www.indiantextilejournal.com/articles/FAdetails.asp?id=1927
- 22. https://nptel.ac.in/courses/116102029/28
- 23. https://www.testextextile.com/fabric-dimensional-stability-shrinkage-test/
- 24. https://csbs.uni.edu/sites/default/files/Air_Permeability.pdf.
- 25. https://www.sciencedirect.com/science/article/pii/B9781845692971500127

recou

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Others:

- 1. Hand book of Textile Testing-part-1: Testing and grading of textile fibres. SP 15-1: Published 1989, Bureau of Indian Standards (BIS).
- 2. Methods of Tests, Fibre, Yarn & Fabric; CIRCOT, Mumbai.
- 3. Textile testing, Angappan P. and Gopalakrishnan R., Valayakkaranoor, Tamil Nadu
- 4. Hand book of Textile Testing & Quality Control, Grover, E.B; Hamby, D.C. Textile Book Publishers, 1960 Technology and Engineering the University of Michigan.
- 5. Textile Testing and Analysis, Collier, Billie, PHI Learning, New Delhi J.
- 6. Lab Manuals.

A) Course Code : 2428502(T2428502/P2428502/S2428502)

B) Course Title : Garment Technology

C) Pre- requisite Course(s) : Textile Fibres, Fabric Structure and Design

D) Rationale

Fabrics are produced mainly for garment manufacturing. The quality of fabric not only influences the quality of the garment but also affects the smoothness of the garment production process. Hence Knowledge of basic features of garment and its manufacturing process is essential for a textile engineer so that they can design the fabric structure by keeping in mind the basic requirements of garment manufacturing, this helps textile engineers to make carrier in this filed by serving garment industry or set up their own venture. Further this course helps students' hands on experience of garment manufacturing processes such as spreading, cutting, sewing and finishing.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select suitable fabric for garment manufacturing for the different end use.
- **CO-2** Prepare patterns based on given measurements.
- **CO-3** Cut layers of fabrics as per marker planning.
- **CO-4** Develop garments by combining different garment parts.
- **CO-5** Achieve desired functionalities of garment by applying different finishing processes.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	1	1	-	-	1	1		
CO-2	3	2	2	2	-	1	1		
CO-3	3	2	-	2	2	1	1		
CO-4	3	2	-	2	-	1	1		
CO-5	3	1	2	2	-	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	T					
2428502	Garment Technology	03	1	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	ks)			
	Course Title	Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course Code		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/	
2428502	Garment Technology	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- H) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2428502

Maj	jor Theory Session Outcomes (TSOs)	Units	Relevant COs
TSO 1b. TSO 1c. TSO 1d. TSO 1e.	Appreciate importance of garment industry. Describe with sketches the process flow for manufacturing a given garment. Classify the garment based on their application. Inspect the fabric raw material used for garment manufacturing. Judge the fabric quality with the help of fabric grading system. Select fabric for garment manufacturing based on end use application.	 Unit-1.0 Introduction to Garment Technology 1.1 Indian Garment Industry – Fashion trends, labour and capital requirements, Production planning, different garment production systems, growth of garment industry, Global scenario 1.2 Garment process flow chart, Stages of Garment manufacturing process 1.3 Classification of Garment: based on Construction (woven and knitted), occasion, age group, gender 1.4 Various fabrics available in the market, their characteristics and application, Factors affecting selection of fabrics in garment manufacturing 1.5 Fabric inspection methods, Fabric grading system: Four-point grading system, 10 points grading system 	COs Number(s) CO1
TSO 2b.	Explain the method of taking measurement of given body part with the help of sketches & diagram. Organize measurement chart for different sizes. Suggest relevant method of pattern making for the given garment. Apply pattern grading technique to convert the given pattern into different sizes.	 Unit-2.0 Pattern Making and Grading 2.1 Terminology related to pattern making, 2.2 Body measurements, preparing measurement chart 2.3 Methods of Pattern making, Pattern design, sample making 2.4 Grading of pattern, methods of pattern grading 2.5 Quality control in pattern making 2.6 Application of computer in pattern making and grading. 	CO2
TSO.3b TSO.3c TSO.3d TSO.3e	Explain the method of marker planning. Apply marker planning technique to minimize the fabric wastage. Suggest the method of spreading based on the given fabric style. Describe the requirements of cutting process. Select relevant tools for cutting garment parts. Explain the use of notchers and drills.	Unit-3.0 Marking, Spreading and Cutting 3.1 Methods and requirements of Marker planning, methods of drawing of Marker, Marker duplication, Computerized marker planning, Marker plan efficiency. 3.2 Objectives, requirements and methods of spreading process to form a lay, nature of fabric packages 3.3 Objectives and requirements of cutting process, cutting tools – portable knives, stationary knife, notchers and drills 3.4 Quality control in fabric laying, marking	соз
TSO 4b.	Explain principle of formation of a given stitch type with the help of diagram. Suggest relevant type of stich for a given scenario. Explain the given type of seam with the	Unit-4.0 Garment Sewing. 4.1 Stich, stitch forming principles, Types of stitch 4.1 Seam, Types of seam, properties of seam 4.2 Sewing machine: Types, Mechanism and	CO4

Ma	jor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
	help of diagram. Justify the application of seam type in the given garments.	4.3	accessories, machine needle, feed mechanism, tensioning devices, stitch formation Sewing threads, Sewing thread construction,	
	Explain working mechanism of the given sewing machine with the help of diagram. Describe the construction of thread based	4.4	ticket number, Tex No., thread properties, seam performance Testing for sewability and tailorability, sewing	
TSO 4g.	on its ticket no. Explain the applications of CAD in garment manufacturing.	4.5	problems and quality control Computer integrated manufacturing (CIM) to the garment industry	
TSO.5a	Describe the given components and trims	Uni	t-5.0 Garment Finishing	CO5
TSO.5b	used in garment manufacturing. Apply functional and decorative type of trims for given applications.		Trims, trimming methodologies and accessories application	
	Determine cost of the garment for given specification.	5.2	Components and Trims: Labels and motifs, linings laces, braids, elastic, buttons and zippers, Fasteners, thread tucking	
	Explain the given method of fusing. Suggest relevant pressing process for the given garment.	5.3	Factors contributing towards Garment costing: Fabric consumption, fabric cost, trims, labour cost, transport cost, over heads	
TSO.5f	Design care labeling symbol for the given type of garment.		Care and Size labeling system, Care label symbols and their meaning	
		5.5	Fusing process: Requirements, methods and Advantages	
		5.6	Pressing of garments: Objectives and methods of pressing	
		5.7		
		5.8	Quality control in finishing and defects.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2428502

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Grade the fabric using grading system. LSO 1.2 Identify the defects in the given fabric.	1.	Fabric inspection using grading system	CO1
LSO 2.1 Prepare pattern of different sizes for the given sample using grading technique.	2.	Grading of pattern from a given garment sample	CO2
LSO 3.1 Apply marker planning to optimize fabric utilization.	3.	Marker planning for a given garment	CO2
LSO 4.1 Demonstrate the fabric spreading technique for the given sample. LSO 4.2 Identify the face and back of the given fabric.	4.	Manual and automatic Fabric spreading process	CO3
LSO 5.1 Use the relevant cutting tool for the given fabric samples. LSO 5.2 Adopt safety requirements required for the	5.	Fabric Cutting for Garment	CO3
fabric cutting.			

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 6.1 Demonstrate the formation of given type of seam.	6.	Formation of seams	CO4
LSO 6.2 Select the relevant seam as per requirement.			
LSO 7.1 Demonstrate the formation of given type of stitch	7.	Stitch Formation	CO4
LSO 7.2 Select the relevant stitch as per requirement.			
LSO 8.1 Identify the different parts of feed system.	8.	Dismantle and assembly of feed systems	CO4
LSO 8.2 Adjust the parts of feed system as per requirement.			
LSO 9.1 Identify the different parts of a sewing machine.	9.	Working of Sewing Machine	CO4
LSO 9.2 Demonstrate sewing process using a given sewing machine.			
LSO 10.1 Demonstrate technique of folding and packing of given garment.	10.	Folding and packing of garment	CO5
LSO 11.1 Demonstrate relevant types of fusing process for the given garment.	11.	Fusing process in the garment manufacturing	CO5
LSO 12.1. Use CAD/CAM software for making given pattern.	12	Pattern making using CAD/CAM	CO5
LSO 13.1. Apply the relevant trim to the given garments.	13	Application of Trims in the garment	CO5

- L) Suggested Term Work and Self Learning: S2428502 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Prepare a chart showing different fabric selection criteria for garment manufacturing.
 - ii. Prepare marker plan for different types of garments.
 - iii. Showcase different types of seams and stitches.
 - iv. Make a portfolio for various cutting, spreading and sewing machine.
 - v. Prepare a chart showing different types of finishing process applied on garment.

b. Micro Projects:

- 1. Prepare a report and make a pdf file for the parameters related to fabric selection.
- 2. Prepare measurement chart of different sizes by taking body measurements of 20-30 persons.
- 3. Prepare a miniature marker plan and grading for at least 5 types of garments available in nearby garment shop.
- 4. Write a detailed report on different cutting machine and their features by visiting nearby garment Industry.
- 5. Visit nearby garment industry and write a report on different types of sewing machine and sewing quality process parameters.
- 6. Collect samples of different trims and components and describe their uses in garment.
- 7. Prepare a ppt presentation for the seminar on care label standards used for at least 5 European countries.

8. Explore library/internet facility and prepare a report on latest production technologies used in garment manufacturing.

c. Other Activities:

- i. Seminar Topics:
 - Latest technologies used in garment Industry.
 - · Application of CAD/CAM in garment manufacturing.
- ii. Visits:

Visit to Garment industry and prepare a detailed report including organization chart, type of machines used and plant layout.

- iii. Self-Learning Topics:
 - CAD/CAM in garment manufacturing
 - Tukatech: Apparel CAD Software
 - Gerber pattern making software
 - Lectra
 - Optitex
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix		
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assess	ment (LA)#
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA) Term Work & Self Learning Assessment				Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignments	Assignments Micro Other			(ELA)
	Sem Test			Projects	Activities*		
CO-1	15%	15%	10%	20%	-	15%	20%
CO-2	20%	20%	15%	20%	20%	25%	20%
CO-3	25%	25%	25%	20%	30%	20%	20%
CO-4	20%	20%	25%	20%	30%	25%	20%
CO-5	20%	20%	15%	15% 20% 20%			20%
Total	30	70	20 20 10			20	30
Marks				50			

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Introduction to Garment Technology	6	CO1	10	3	3	4	
Unit-2.0 Pattern making and Grading	8	CO2	14	4	4	6	
Unit-3.0 Marking, Spreading and Cutting	12	CO3	16	4	6	6	
Unit-4.0 Garment Sewing	10	CO4	14	4	4	6	
Unit-5.0 Garment Finishing	12	CO5	16	5	5	6	
Total	48	-	70	20	22	28	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Dalawant	F	PLA/ELA	
S.	Laboratory Drastical Titles	Relevant COs	Perfor	mance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Fabric inspection using grading system	CO1	40	50	10
2.	Grading of pattern from a given garment sample	CO2	40	50	10
3.	Marker planning for a given garment	CO2	40	50	10
4.	Manual and automatic Fabric spreading process	CO3	40	50	10
5.	Fabric Cutting for Garment	CO3	40	50	10
6.	Formation of seams	CO4	40	50	10
7.	Stitch Formation	CO4	40	50	10
8.	Dismantle and assembly of feed systems	CO4	40	50	10
9.	Working of Sewing Machine	CO4	40	50	10
10.	Folding and packing of garment	CO5	40	50	10
11.	Fusing process in the garment manufacturing	CO5	40	50	10
12.	Pattern making using CAD/CAM	CO5	40	50	10
13.	Application of Trims in the garment	CO5	40	50	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	Spreading table	Manual method, hook	All
2.	Straight knife cutter: Power operated straight knife machine	Blade size: 8" straight knife, cutting height more than 4 inches, blade with grinding attachment, Motor rpm: 1440 or more	5
3.	Single needle lockstitch sewing machine	Single needle drop feed industrial lockstitch machine with motor, stand and table, complete unit, Auto lubrication, Number of needles: 01 for medium to heavy fabrics. sewing speed: 4000 stitches per minute, Stitch length: minimum 4.2mm or more.	6, 7, 8, 9
4.	Over Lock Machine 3 Thread	Juki/Singer Standard Industrial model machine	6, 7, 8, 9
5.	Over Lock Machine 5 Thread	Juki/Singer Standard Industrial model machine	6, 7, 8, 9
6.	Blind Stitching Machine	Juki/Singer Standard Industrial model machine	6, 7, 8, 9
7.	Button Hole Machine	Juki/Singer Standard Industrial model machine	13
8.	Bar Tacking Machine	Juki/Singer Standard Industrial model machine	6, 7, 8, 9
9.	CAD software for pattern engineering, grading and marker planning	Faster pattern drafting, Digitizing and Plotting Options, Flexibility in grading, alteration & editing, Flexible tools so that patterns after grading can be unnested easily and user can make amendments to any of the patterns, Faster Grading, Error free Markers, Time saving options, Real consumption facts, Software supplied with 5 users, certified software.	2, 3, 6, 7, 12

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Titles Author(s)		
1.	Carr and Latham's Technology of Clothing Manufacture	David J. Tyler	Wiley-Blackwell Publisher, 2008 ISBN: 978-1405161985	
2.	Stitches & Seam	Laing R.M. & Webster J	The Textile Institute, 1999 ISBN: 978-1870812733	
3.	Clothing Technology from fibre to Fashion	Kilgus R.	Verlag Europa-Lehrmittel, Haan- Gruiten, 2014, ISBN: 3808562218	

4.	Cutting & draping occasion clothes	Clooke	Batsford Ltd, 1998 ISBN: 0713483326
5.	Introduction to clothing manufacture	Gerry Cooklin, Steven George Hayes, John McLoughlin	Wiley-Blackwell Publisher, 2006 ISBN: 978-0632058464
6.	An introduction to quality control for the apparel industry	Mehta P.V.	CRC Press, 1992 ISBN: 978-0824786793
7.	Apparel Manufacturing Handbook	Jacob Solinger	Van Nostrand Reinhold Company, 1988. ISBN:0824786793
8.	Garment Manufacturing Technology	Rajkishore Nayak , Rajiv Padhye	Woodhead Publishing, 2015, ISBN: 978-1-78242-232-7
9.	Apparel Manufacturing Technology	T. Karthik P. Ganesan D. Gopalakrishnan	CRC Press, Taylor & Francis Ltd, 2017 ISBN: 13: 978-1-4987-6375-2

(b) Online Educational Resources:

- 1. https://textilestudycenter.com/textile-books-free-donwload/
- 2. http://textilelearner.blogspot.in/
- 3. https://garmentsmerchandising.com/
- 4. https://www.onlineclothingstudy.com/
- 5. https://youtu.be/w8xiBtK0Ca0
- 6. https://www.slideshare.net/

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others: -

A) Course Code : 2428503 (T2428503/S2428503)

B) Course Title : Processing of Synthetic & Their Blends

C) Pre- requisite Course(s) : Textile Fibres, Man-made Fibre Technology, Yarn Manufacture-I,

Yarn Manufacture-II

D) Rationale

The textile industry has witnessed a substantial shift towards the use of synthetic fibers and their blends due to their versatility, cost-effectiveness, and diverse applications. Thus, imparting knowledge and skills related to the processing of synthetic fibers aligns with the evolving needs of the industry. This course aim to equip students with comprehensive knowledge about the latest methods, machinery and process parameters for processing synthetic fibers and their blends. This course will prepare them with the knowledge and skills needed to meet the demands of the ever-evolving textile industry and prepares them to work with cutting-edge equipment and processes. A strong foundation in processing synthetic fibers opens up diverse career opportunities for diploma holders, including positions in textile manufacturing, quality control, product development, research and development, and management roles.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Suggest the blending method for the given fibres.
- **CO-2** Select the machine for processing of given fibre and their blends.
- **CO-3** Adjust the speed and setting of spinning machines for the processing of given fibre and their blends.
- **CO-4** Maintain process parameters to manufacture long staple spun yarn or dyed fibre yarn on cotton spinning system.
- **CO-5** Suggest the blend composition and process parameters for the desired yarn properties.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	1	1	-	-	1	1		
CO-2	3	1	1	-	-	1	1		
CO-3	3	2	-	1	-	1	1		
CO-4	3	1	-	1	-	1	1		
CO-5	3	2	2	-	1	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course				heme of Stud Hours/Week)	•			
Code	Title	Classroom Instruction (CI)		Instruction		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т						
2428503	Processing of Synthetic & Their Blends	02	01	-	02	05	04		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	Scheme (Ma	rks)		
		Theory Ass (TA		Self-Le Asses	Work & earning sment VA)		essment A)	A+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2428503	Processing of Synthetic & their Blends	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars,

micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2428503

Ма	jor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 1a.	Describe the function of different section of cotton system of spinning.	Unit	t-1.0 Introduction to Spinning and Blending	CO1
	Correlate the properties of fibers with their suitability for specific end uses and its importance in the textile production process. Suggest the right blend constitution for the	1.2	General information on manmade fibres Common systems of Spinning of staple fibres: Cotton system of spinning Fibre characteristics and spinnability Fibre Properties and end uses	
	given type of Textile substrate.		Objective of Blending	
TSO 1d.	Suggest the relevant blending method by analyzing the relative merits and demerits of different blending methods for given blend composition.	1.7	Indices of blending, Migration, Tinting. Selection of blend constituent Mechanics of blending: Blending at blowroom, Blending at drawframe, Relative merits and demerits of different blending methods, Optimum blending method	
TSO 2a.	Suggest the sequence of blowroom machines for the given manufactured fibre and their blends.	Uni t	t-2.0 Fibre Opening, Individualization and Parallelization Blowroom: Introduction, Typical Sequence of	CO2
TSO 2b.	Suggest the modification in speeds and settings of blowroom and carding machine for the given manufactured fibre and their blends.	2.2	blowroom machines Principles of opening, Speed and settings at blowroom, General Considerations in Blowroom, Waste and Production at blowroom	
TSO 2c.	Select the card clothing type for the given manufactured fibre and their blends.	2.3	Carding: objectives of carding, Intensity of carding, Card clothing	
TSO 2d.	Suggest effective remedies to Identified common faults related to carding and drawframe during processing of fibres.	2.4	Speeds and settings, General Considerations in Carding, Waste and Production at Carding Card Auto-Levellers, Carding faults & their	
TSO 2e.	Calculate the delivery speed, production and waste % for blowroom, carding and drawframe for a given situation.	2.6	elimination Drawing: objectives of drawframe, Blending at drawframe, Drafting Systems, Roller lapping: causes and	
		2.8	remedies General considerations in drafting, Waste Production and Unevenness in drafting.	
		2.9	Fibre Hooks. Formation of Fibre Hook, Tracer Fibre Technique, Theory of drafting for removal of hooks in sliver	
	Explain the factors that affect roving quality including drafting system, roller setting, spindle speed and roving twist.		t-3.0 Roving & Yarn Formation ROVING: objectives of Speed frame, Drafting systems adopted for man- made fibres and	CO3
TSO 3b.	Suggest the modifications in speed and settings of speed frame and ring frame for processing of for the given manufactured	3.2	blends, Roller Setting, Spindle speed Roving twist and False – twist attachments	
TSO 3c.	fibre and their blends. Explain the role of ring and traveller in the yarn quality.	3.3	General considerations in Roving, Production and Unevenness RING SPINNING: Objective of Ring Spinning,	
TSO 3d.	Identify the causes of common faults in ring spinning process.		modern Drafting Systems. Roller settings. Modified drafting system.	
TSO 3e.	Calculate the speed, production and waste % in speed frame and ring frame for a given	3.5	Yarn twist, Spindle speed, Spinning rings and travellers, Yarn hairiness	
	scenario.	3.6	General considerations in ring spinning, Feed,	

Ma	jor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
		3.7	Roller Lapping and Roller weighting. Aprons, Fibre lubricant film Yarn quality and Common Yarn faults, Waste and Production	(,
TSO 4a.	Identify common problems encountered during processing of long staple.	Uni	t-4.0 Other Spinning System	CO4
TSO 4b.	Suggest the modifications required in the existing system for the spinning dyed fibers.	4.1	Spinning of long staple fibres: Spinning process, problems in processing, yarn quality and production	
TSO 4c.	Differentiate between Woollen and Worsted system.	4.2	Spinning of Dyed fibres : Effects of fibre dyeing, requirements of spinning of dyed fibres,	
TSO 4d.	Suggest the modification required to process man-made fibre and their blends		Spinning process, Problems, Yarn quality and production	
TSO 4e.	on Woollen or Worsted system. Explain impact of process parameters and design aspects of rotor on yarn quality of	4.3	Spinning of Man-made fibres on Woollen and Worsted system: Worsted system, Semiworsted system, Woollen system	
	rotor spun yarn.	4.4	Rotor Spinning: Machine and Process parameters, Design aspects of rotor spinner, yarn quality and general consideration	
TSO 5a.	Optimize winding operation by recognizing and minimizing common winding faults.	Uni	t-5.0 Winding, Doubling & Properties of Blended Yarn	CO5
	Explain the function of twisting machine. Explain relevant method used to create a	5.1	Winding : Optimum clearing, knots & splicing, Winding faults and General consideration	
	given fancy yarns including techniques for achieving unique and decorative yarn effects.		Doubling: Doubler or assembly winder, Twisting machines and Doubling Twist	
	Predict the characteristics of yarns resulting from different fiber blends and compositions.	5.4	Fancy yarns: Methods of creating fancy effects Properties of Blended yarns: Influence of fibre properties and blend composition on yarn properties	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2428503 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - 1. Conduct a library survey and prepare a comparative chart for properties of different synthetic fibres.
 - 2. Collect the detail specifications of different types of beating and opening machine used in blowroom and prepare power point presentation on the same.
 - 3. Prepare a report on different spinning system used for different fibre blends.
 - 4. Prepare a presentation on different types of winding system used for manmade fibre spun using short staple fibre spinning system.
 - 5. Prepare a comparative chart for different composition of Polyester/Cotton, Polyester/Viscose and Polyester/Acrylic blend and their properties.

b. Micro Projects:

- 1. Collect and paste different long staple fiber with their characteristics.
- 2. Draw process flow chart of different spinning system used for processing the blends.
- 3. Visit nearby Textile spinning industry and collect the details of process sequence and machinery used for processing of different types of blends.
- 4. Collect the speed and setting data for processing of cotton fibre and different synthetic blends for the same count of yarn and prepare a report.
- 5. Collect samples of blended fabric from local market and prepare a comparative report containing their blend composition, yarn count and end application.

c. Other Activities:

- 1. Seminar Topics:
 - Jute Spinning System
 - Technological Advancement in Spinning System for processing long staple fibre
 - Short staple spinning of Silk and their blends
 - Spinning of synthetic blends on worsted system
 - Challenges of Spinning synthetics and their blends
- 2. Visits: Visit nearby Textile Processing industry and Prepare report of visit with special comments on various process parameters used, material used, machinery used, batch production/mass production and cost of final yarn produced.
- 3. Self-Learning Topics:
 - Developments in Cotton spinning system to process synthetic blends.
 - Fancy yarn production
 - Blend analysis
 - Advancement in drafting system
 - Development in ring and traveller design for processing synthetic blends
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA)#			
COs	Progressive End Theory Theory Assessment Assessment (ETA) COS (PTA) Term Work & Self Learning Assessment					Progressive Lab Assessment	End Laboratory Assessment		
	, ,	Class/Mid		Micro	Other	(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	20%	20%	20%	20%	20%	-	-		
CO-2	25%	25%	20%	20%	20%	-	-		
CO-3	20%	20%	20%	20%	20%	-	-		
CO-4	20%	20%	20%	20%	20%	-	-		
CO-5	15%	15%	20%	20%	20%	-	-		
Total	30	70	20 20 10			-	-		
Marks			50						

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

The percentages given are approximate.

- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Introduction to Spinning and Blending	10	CO1	15	5	5	5	
Unit-2.0 Fibre Opening, Individualization and Parallelization	12	CO2	17	5	6	6	
Unit-3.0 Roving & Yarn Formation	10	CO3	15	4	5	6	
Unit-4.0 Other Spinning System	10	CO4	15	4	5	6	
Unit-5.0 Winding, Doubling & Properties of Blended Yarn	6	CO5	8	2	3	3	
Total	48	-	70	20	24	26	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Spinning of man-mades and Blends on cotton system	Salhotra, K.R.	Textile association of India. 2014, ISBN: 818932800-X
2.	Hand book of worsted and wool blended suiting process	Tomer, R.S.	Woodhead publishing, India,,2014 ISBN 9789380308012
3.	Spun Yarn Technology	Eric Oxtoby	Butterworth-Heinemann, 2013 ISBN: 978-0408014649
4.	Man-made Fibres and Their Processing: Short-staple Spinning Series (Manual of Textile Technology)	Klein, W.	The Textile Institute ISBN: 9781870812610
5.	Spinning fundamentals of man-made fibers	Pattabhiram, T.K.	CBS Publishers and Distributors Pvt. Ltd., New Delhi 2004; ISBN: 9781855739949

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/116/102/116102055/
- 2. https://archive.nptel.ac.in/courses/116/102/116102048/
- 3. https://elearning.tul.cz/mod/resource/view.php?id=434370
- 4. https://www.fibre2fashion.com/industry-article/9277/unlocking-the-potential-of-man-made-fibers-with-ring-spinning
- 5. https://archive.nptel.ac.in/courses/116/102/116102038/

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- Fancy Yarns: Their Manufacture and Application; R H Gong and R M Wright, CRC & Woodhead Publication, 2002, ISBN: 9780081016510
- 2. Textile Research Journal, Sage Publications Mumbai
- 3. Indian Journal of Fibre & Textile Research (IJFTR), CSIR-NIScPR
- 4. Reiter Spinning Manuals

A) Course Code : 2400504B (T2400504B/P2400504B/S2400504B)

B) Course Title : Artificial Intelligence (Basic)

C) Pre- requisite Course(s) :
D) Rationale :

Artificial intelligence is the theory and development of computer systems able to perform tasks such as, visual perception, speech recognition, decision-making etc. normally requiring human intelligence. Data analytics gives the basis of developing any artificial intelligence system. The Python programming language is one of the most accessible programming languages, has several modules to write programs to solve Artificial Intelligence, Machine Learning, Data Analysis problems. Moreover, it has simplified syntax and versatile data structures and functionsto speed up the code writing efficiently. This course provides the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This course also provides the students the foundations for data analytics with python. The course explains data science techniques and the various Python programming packages required to prepare data for analysis, perform data analytics and create meaningful data visualization.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Elaborate the use of Artificial Intelligence for the problem solving as Technological driver.
- **CO-2** Write Python Programmes for solving problems.
- **CO-3** Analyze given data by using NumPy package of Python.
- **CO-4** Analyze given data by using Pandas package of Python.
- **CO-5** Visualize given data set using Matplotlib.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment		PO-7 Life Long Learning	PSO-1	PSO- 2
CO-1	-	2	2	-	-	-	1		
CO-2	-	3	3	3	-	-	2		
CO-3	-	3	3	3	-	-	2		
CO-4	-	2	3	3	-	-	2		
CO-5	-	3	3	3	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)							
Course Code	(CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits			
		L	Т	(LI)	(TW+ SL)	(CI+LI+TW+SL)	(C)		
2400504B	Artificial Intelligence (Basic)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
Code		Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2400504B	Artificial Intelligence (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504B

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs Number
		(s)
TSO 1a. Elaborate the use of Artificial Intelligence TSO 1b. Explain various technological Drivers of	Unit-1.0. Artificial Intelligence	CO-1
Modern Al	Artificial Intelligence: What is AI?, Types of AI,	
TSO 1c. Describe Knowledge representation	History of AI, Turing Test, Symbol Systems and	
TSO 1d. Classify Intelligent agents	the scope of Symbolic AI, Structure of AI, Goals	
TSO 1e. List the characteristics of agents	of AI, Importance of AI, Techniques used in AI,	
TSO 1f. Apply various search strategies for problem solving	Perception, Understanding and Action, Technological drivers of modern AI	
Solving	Knowledge: Definition, Knowledge	
	Representation, objectives andrequirements,	
	practical aspects of representation,	
	Components Intelligent Agents: Agents and Environments,	
	Properties of environments, characteristics of	
	agents, classification of agents	
	Problem Solving: Problem Formulation, Goal	
	Formulation, State Space Search,Search	
	Problem, Basic search algorithm,Search Tree,	
	Search strategies—Uninformed and informed	
	search, Breadth FirstSearch, Depth FirstSearch,	
	Best FirstSearch, Constraint Satisfaction Problem (CSP), Back tracking Search.Problem	
	Definitions: N Queen Problem, 8Puzzle	
	Problem, Tic-tac-Toe.	
TSO 2a. Explain Python tokens and variables	Unit-2.0 Python Programming	
TSO 2b. Use the concept of I-value and r -value		CO-2
TSO 2c. Write python program using various data types	Python character set, Python tokens, variables, concept of I-value and r-value, use of	
TSO 2d. Write Program using various operators in	comments.	
Python	Data types: number (integer, floating point,	
TSO 2e. Write program using conditional	complex), boolean, sequence (string,list,	
statements TSO 2f. Use various string functions for problem	tuple), none, mapping (dictionary), mutable	
solving in python program	and immutable data types Operators:	
TSO 2g. Write programmes using various	arithmetic operators, relationaloperators,	
operations on list	logical operators, assignmentoperator,	
TSO 2h. Write programmes by using various operations on Tuples and Dictionary	augmented assignmentoperators. Expressions,	
TSO 2i. Create user defined functions	statement, typeconversion & input/output:	
TSO 2j. Write python programmes using built- in	precedence ofoperators, expression,	
functions	evaluation of expression.	
TSO 2k. Describe the procedure to import module in	Conditional and Iterative statements: if, if-else, if-	
the Python	elif-else, for loop, range function, while loop, break and continue statements, nested loops	
TSO 2I. Describe procedure to Import Library and functions in the Python	String, List, Tuples and Dictionary:	
runctions in the Fython	<u> </u>	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 2m. Write program using Iterative statements.	String: indexing, string operations (concatenation, repetition, membership & slicing), traversing a string using loops, built-in functions. Lists: introduction, indexing, list operations (concatenation, repetition, membership & slicing), traversing a list using loops, built-in functions, linear search on list of numbers and counting the frequency of elements in a list Dictionary: accessing items in a dictionary using keys, mutability of dictionary (adding a new item, modifying an existing item), traversing a dictionary, built-in functions Python Functions: types of function (built- in functions, functions defined in module, user defined function, arguments and parameters, default parameters, positionalparameters, function returning value(s), flow of execution, scope of a variable (global scope, local scope) Modules and Packages: Importing module using 'import' Regular Expressions, Exception Handling, PyPI Python PackageIndex, Pip Python package manager, Importing Libraries	
TSO 3a. Explain Data Analytics and its elements	and Functions Unit-3.0 Data Analytics and Computing with	CO-3
TSO 3b. Differentiate Data Analysis and Data Analytics TSO 3c. Explain the use of open source data TSO 3d. Differentiate Qualitative and Quantitative data analysis TSO 3e. Explain procedure to Install NumPy Library TSO 3f. Use NumPy library to perform various operations and functions on array TSO 3g. Write Programs using NumPy for array manipulations	Data Analytics: Data, Types of Data, Importance of Data, Data Analysis Vs Data Analytics, Types of Data Analytics, Elements of Analytics, Data Analysis Process, Qualitative and Quantitative analyses, Open Source Data. NumPy Library: Introduction, Installation, Ndarray: creating an array, intrinsic creation of an array, Data types, basic operations, aggregate functions, Indexing, slicing, Iterating, Conditions and Booleanarrays, Array manipulation: Joining, splitting, shape changing, sorting, Structured arrays, Reading and Writing array data on a File.	
TSO 4a. Apply Pandas data structure for data analysis TSO 4b. Write Programs using Pandas to perform various operations and functions on series. TSO 4c. Perform various operation in a Data Frame columns and rows TSO 4d. Write Programme to read and write on CSV, XLS and Text data files TSO 4e. Apply various data cleaning operations and prepare data.	Pandas data structures: Series, Declaration, selecting elements, assigning values, Filtering values, operations, mathematical functions, evaluating values, handling missing data, creating series from dictionaries, adding two series. Data Frame: Defining, selecting elements, assigning values, membership, deleting a column, filtering. Index Objects: Indexing, Reindexing, Dropping, sorting and ranking, Descriptive Statistics Data Loading: Reading and Writing csv, xls, text data files, Data Cleaning and Preparation: Handling missing data, removing duplicates, replacing values, Vectorized String Methods,	CO-4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
	HierarchicalIndexing, Merging and Combining, Data aggregation and Grouping.	
TSO 5a. Illustrate the use of Matplotlib and PyPlot package for showing plots and images	Unit-5.0 Data Visualization with Matplotlib	CO-5
TSO 5b. Customize plots with Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids TSO 5c. Differentiate various charts based on their applications	Data Visualization: Introduction to Matplotlib ,PyPlot package, Figures andSubplots, showing plots and images Customizing Plots: Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids, Annotating with text, Matplotlib	
	Configuration Chart types: Line, Bar, stacked bar, Box plots, pie chart , Histogram and Densityplots, Scatter plot, Saving Plots to a file,	
	Close and clear plots.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504B

Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Use various data types and operators to solve given problem LSO 1.2 Use conditional and iterative statements for solving given problem	1	 Conditional and Iterative statements 1a. Write a program to generate randomnumbers between 5 and 10. 1b. Write a program to find the square root of a number. 1c. Write a python program to check if a numberis positive, negative or 0. 1d. Write Python program to print all primenumbers between 0-50. 	CO-2
LSO 2.1 Use string functions for performing various string operations	2	 String Handling 2a. Write a Programme that asks the user for astring with only single space between words, and return number of words in thestring. 2b. Write a Program that inputs a line of textand print the count of Vowels in it. 2c. Write a Program that inputs a line of text andprint the biggest word in it. 2d. Write a Program that inputs a line of textand print a new line of text where each word of input line is reversed. 	CO-2
LSO 3.1 Use list operations for concatenation, repetition & slicing LSO 3.2 Perform various operation in the Tuples LSO 3.3 Perform various operation in the dictionary	3	List, Tuples and Dictionary 3a. Write a python program to convert a stringto a list. 3b. Write a program to print the largest numberin a list. 3c. Given a tuple pairs = ((3,9), (8,4), (3,7), (24,18)), count the number of pairs (a, b)such that both a and b are odd. 3d. Write a program to input a list of numbers and swap elements at the even location withthe elements at the odd location. 3e. Write a program to merge two dictionaries.	CO-2

	Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
-	LSO 4.1 Use built-in functions to solve	4	Python Functions	CO-2
	given problem		4a. Write a function to reverse a string.	
	LSO 4.2 Create user defined functions to		4b. Write a function to calculate the factorial of a	
-	solve given problem		number.	
	LSO 5.1 use basic data structure using NumPy	5.	Basic data structures in NumPy 5a. Create a List, set, tuple and dictionary whichstores the details of a student (roll no, name, dept,	CO-3
	LSO 5.2 Convert the list and tuple as NumPy array		branch, percentage of mark) inPython and print the values. 5b. Convert the list and tuple as NumPy array.	
Ī	LSO 6.1 Create Arrays in Numpy	6	Arrays in NumPy	CO-3
	using different intrinsic		6a. Create arrays using different intrinsic methods	
	methods		(ones, zeros, arange, linspace,indice) and print	
			their values.	
	LSO 6.2 Perform arithmetic		6b. Check the results of arithmetic operations like	
	operations and mathematical operations		add(), subtract(), multiply() and divide()with arrays created using arrange and ones intrinsic	
	using arrange and ones		method.	
	intrinsic method.		6c. Check the results of mathematical operations like exp(), sqrt(), sin(), cos(), log(), dot() on an array	
			created using arrange	
			intrinsic method.	
	LSO 7.1 Apply aggregate functions on	7	Built-in functions in NumPy.	CO-3
	data by using Built-in function s in Numpy		7a. Load your class Mark list data from a csv (comma separated value) file into an array. Perform the	
	minumpy		following operations to inspect yourarray. Len(),	
			ndim, size, dtype, shape, info()	
			7b. Apply the aggregate functions on this data and	
			print the results. (Functions like min(), max(),	
Ļ	100 0 4 11 11 11 11 1	_	cumsum(), mean(), median(), corrcoef(), std())	00.0
	LSO 8.1 Handle multiple arrays by	8	Handling Multiple Arrays	CO-3
	applying various operations on arrays		8a. Create two python NumPy arrays (boys, girls) each with the age of nstudents in the class.	
	arrays		8b. Get the common items between twopython NumPy	
			arrays.	
			8c. Get the positions where elements of twoarrays match. 8d. Remove from one array those items thatexist in another.	
			8e. Extract all numbers between a given rangefrom a	
			NumPy array.	
	LSO 9.1 Apply indexing on the given set	9	Indexing in NumPy	CO-3
	of data		9a. Load your class Mark list data from a csv fileinto	
			an array.	
			9b. Access the mark of a student in a particular subject using indexing techniques.	
			9c. Select a subset of 2D array using fancyindexing	
			(indexing using integer arrays	
Ī	LSO 10.1 Create series using list and	10	Working with a Series using Pandas	CO-4
	dictionary in pandas		10a. Create a series using list and dictionary. 10b.	
	LCO 40 2 Point diff		Create a series using NumPy functions in	
	LSO 10.2 Print different values from		Pandas.	
	series.		10c. Print the index and values of series. 10d. Print the first and last few rows from the	
			series.	
ŀ	LSO 11.1 Perform various operation in a	11	Working with Data Frame Rows	CO-4
	Data Frame rows		11a. Slicing Data Frame using loc and iloc.	
			11b. Filter multiple rows using isin.	

Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
		 11c. Select first n rows and last n rows 11d. Select rows randomly n rows and fractionsof rows (use df. sample method) 11e. Count the number of rows with eachunique value of variables 11f. Select nlargest and nsmallest values.11g. Order/sort the rows 	
LSO 12.1 Apply different techniques to merge and combine data	12	Merge and combine data 12a. Perform the append, concat and combinefirst operations on Data Frames. 12b. Apply different types of merge on data. 12c. Use a query method to filter Data Frame with multiple conditions.	CO-4
LSO 13.1 Create Linear Plot to identify various relation in the data using Matplotlib LSO 13.2 Create Scatter Plot to identify various relation in the data using Matplotlib		Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage. Download thedata set from https://www.kaggle.com/rohankayan/years-of- experience-and-salary-dataset 13a. Create a linear plot to identify the relationship between years of working experience and the annual wages with suitable title, legend and labels. 13b. Create a scatter plot to identify the relationship between years of working experience and the annual wages with title, legend and labels. 13c. Also distinguish between observations that have more than 5 years of working experience and observations that have lessthan 5 years of working experience by using different colors in one single plot.	CO-5
LSO 14.1 Plot Bar graph by Changing the color of each bar, Change the Edge color, Linewidth and Line style.	14	Consider the Iris dataset, where observations belong to either one of three iris flower classes. Download the data set from https://www.kaggle.com/arshid/iris-flower- dataset 14a. Visualize the average value for each feature of the Set osa iris class using a bar chart. 14b. Format the obtained bar graph by Changingthe color of each bar, Change the Edge color, Line width and Line style.	CO-5

- L) Suggested Term Work and Self Learning: S2400504B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.
 - b. Micro Projects:
 - 1. Handing Two-dimensional array in NumPy Download the data set from

https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/iris.datahttps://www.kaggle.com/arshid/iris-flower-dataset

- a. Import iris dataset with numbers and texts keeping the text intact into python NumPy.
- b. Convert the 1D iris to 2D array (iris2d) by omitting the species text field.
- c. Find the number and position of missing values in iris2d's sepal_length
- d. Insert np.nan values at 20 random positions in iris 2d dataset
- e. Filter the rows of iris2d that has petal_length> 1.5 and sepal_length< 5.0

Expected Outcome (Use various operations on two dimensional arrays in NumPy)

2. Handling missing data and duplicates in Pandas:

- a. Identify rows with missing data (isnull(), notnull()) and replace NA/Null data with a given value.
- b. Drop rows and columns with any missing data (dropna(), dropna(1))
- c. Find duplicate values and drop duplicates.
- d. Fill the missing values using forward filling and backward filling.
- e. Replace the missing value with new value and write the dataframe to a CSV file in the localdirectory.

Expected Outcomes (a. Identify missing data, b. Find Duplicates values, c. Write the dataframe to aCSV file in the local directory.)

3. Working with Data Frame Columns:

- a. Create and print a Data Frame.
- b. Find the descriptive statistics for each column.
- c. Group the data by the values in a specified column, values in the index.
- d. Set Index and columns in a Data Frame.
- e. Rename columns and drop columns
- f. Select or filter rows based on values in columns.
- g. Select single and multiple columns with specific names

Expected Outcome (Perform various operation in a Data Frame columns)

4. Indexing & Sorting in NumPy:

- a. Load your class Mark list data from a csv file into an array.
- b. Sort the student details based on Total mark.
- c. Print student details whose total marks is greater than 250 using Boolean indexing.

Expected Outcomes (a. Sort the given set of data, b. Use indexing in an array)

5. Array Slicing in NumPy:

- a. Load your class Mark list data into an array called "marks" to store students roll num, subjectmarks and result.
- b. Split all rows and all columns except the last column into an array called "features".
- c. Split the marks array into 3 equal-sized sub-arrays each for 3 different subject marks.
- d. Split the last column into an array "label".
- e. Delete the roll num column from the marks array and insert a new column student name in itsplace.

Expected Outcome (Use array slicing in Numpy for the given set of data)

6. Consider the Iris dataset, where observations belong to either one of three iris flower classes.

Download the data set from

https://www.kaggle.com/arshid/iris-flower-dataset

- a. Visualize the Histogram for each feature (Sepal Length, Sepal Width, petal Length & petal Width)separately with suitable bin size and color.
- b. Plot the histograms for all features using subplots to visualize all histograms in one single plot. Save the plot as JPEG file.
- c. Plot the box plots for all features next to each other in one single plot. Perform 3D printing ofplastic casing of inhaler used by Asthma patients and estimate the cost.

Expected Outcomes (a. Plot the Histogram for the various features using subplot, b. Plot the boxplots for all features next to each other in one single plot)

c. Other Activities:

1. Lab Activities:

- Install Python IDE and important Python Libraries
- Install Anaconda and find the features of Jupyter Notebook.
- Import various module using 'import'
- Use Pip Python package manager.
- Import Libraries and Functions in Python

2. Seminar Topics:

- Technological rivers of modern Artificial Intelligence
- Intelligent Agents and Environments in Artificial Intelligence
- Various Search Strategies
- Python for Data Science
- Python Libraries and Packages used in data Science
- Data Visualization
- Various data set available over Internet

3. Self-Learning Topics:

- Use of AI in Engineering and Technology
- Data Science and Machine Learning
- Problem and Goal Formulation
- Search strategies
- Breadth First Search and Depth First Search
- Back tracking Search
- N Queen and 8 Puzzle Problem

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term Wor	k Assessme	nt (TWA)	Lab Assessment (LA)#				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Wo	ork & Self-L Assessmei	Ū	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid	İ	Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	20%	20%	20%		30%					
CO-2	10%	20%	20%		20%	20%	25%			
CO-3	20%	25%	20%	30%	20%	20%	25%			
CO-4	30%	25%	20%	20%	30%	30%	25%			
CO-5	20%	10%	20%	50%		30%	25%			
Total	30	70	20	20	10	20	30			
Marks				50						

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under

point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of
 questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title	Total	Dalawant	Total	ETA (Marks)			
and Number	Classroom Instruction (CI) Hours	Relevant COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0. Artificial Intelligence	9	CO-1	14	6	5	3	
Unit-2.0. Python Programming	12	CO-2	14	4	4	6	
Unit-3.0. Data Analytics and Computing with NumPy	10	CO-3	17	4	5	8	
Unit-4.0 . Data Analysis with Pandas	10	CO-4	18	4	5	9	
Unit-5.0. Data Visualization with Matplotlib	7	CO-5	7	2	2	3	
Total Marks	48		70	20	21	29	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Dalawant	F		
C No	Laboratory, Dractical Titles	Relevant COs	Perfor	Viva-	
5. NO.	. No. Laboratory Practical Titles	Number (s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Conditional and Iterative statements	CO-2	-	90	10
2.	String handling	CO-2	-	90	10
3.	List, Tuples and Dictionary	CO-2	20	70	10
4.	Python Functions	CO-2	-	90	10
5.	Basic data structures in NumPy	CO-3	-	90	10
6.	Arrays in NumPy	CO-3	-	90	10
7.	Built-in functions in NumPy.	CO-3	20	70	10
8.	Handling Multiple Arrays	CO-3	20	70	10
9.	Indexing in NumPy	CO-3	-	90	10
10.	Working with a Series using Pandas	CO-4	-	90	10
11.	Working with Data Frame Rows	CO-4	20	70	10
12.	Merge and combine data	CO-4	40	50	10
13.	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage.	CO-5	80	10	10
14.	Consider the Iris dataset, where observations belong to either one of three iris flower classes.	CO-5	80	10	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 14
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 14
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 14
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 14
5.	Various modules, Libraries and Packages	NumPy, Pandas, Matplotlib, PyPlot package	S. No. 1 to 14

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Artificial Intelligence Basics - A Non-Technical Introduction	TomTaulli	Apress (2019)
2.	Fundamentals of artificial Intelligence	Chowdhary K. R	Springer 2020
3.	Artificial Intelligence A Modern approach	Stuart J. Russell and Peter Norvig	PrenticeHall 2010, 3 rd Edition
4.	Introduction to Computing and Problem-Solving using Python	E. Balagurusamy	McGraw Hill Education (India)Pvt. Ltd.1st Edition /2016
5.	Learning Python Programming	Jeffrey Elkner, Allan B.Downey, Chris Meyers	Samurai Media Limited. 2016
6.	Python Programming	Ashok Namdev Kamthane and Amit Ashok Kamthane	McGraw Hill Education (India) Pvt.Ltd.2020, 2 nd Edition
7.	Programming in Python	Dr. Pooja Sharma	BPB Publications 2017
8.	Taming Python by Programming	Jeeva ose	Khanna Book Publishing Co(P)Ltd, 2017, Reprinted2019
9.	Python Data Analytics	Fabio Nelli	Apress,2015
10.	Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython	Wes McKinney	O'REILLY 2018, Second Edition

(b) Online Educational Resources:

- 1. NPTEL Web Content- Artificial Intelligence, Prof. P. Mitra, Prof. S. Sarkar, IIT Kharagpur URL: https://nptel.ac.in/courses/106/105/106105078/
- 2. https://www.learnpython.org
- 3. www.python.org
- 4. https://www.tutorialspoint.com/python

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

Data Source:

- https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
- https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
- https://www.kaggle.com/arshid/iris-flower-dataset
- https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset

A) Course Code : 2400504C (T2400504C/P2400504C/S2400504C)

B) Course Title : Internet of Things (Basic)

c) Pre- requisite Course(s) : Digital Electronics, Electronics Circuits, Fundaments of Computers

and Computer networks

D) Rationale :

The Internet of Things (IoT) is the upcoming field that has the capability to connect everything on the earth. This course focuses on the development of IoT concepts such as sensing, actuation with implementation of communication protocols.

The course also focuses on real life aspects of IoT and how to integrate it in real life projects. The course will simplify the concept of IoT by using the Node MCU board for IoT application development. In this course students will learn about the use of Node MCU and its applications as a beginner/intermediate in the field of IoT. Apart from this, students will learn about the APIs, by using which integration of features like send Email, WhatsApp messages and notification based on certain events in projects is possible. Overall, this course covers both hardware and software aspects of IoT with practical exposure.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Describe the functions of each block of the basic IoT system
- **CO-2** Explain communication protocol used in IoT and its applications
- **CO-3** Use appropriate sensors for the specific measurement through the IoT platform
- **CO-4** Explain APIs, client-server connections and its integration in real life applications.
- **CO-5** Build and test a complete, working IoT system involving prototyping, programming, and data analysis

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Manageme nt	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	-	-	_	-		
CO-2	1	2	2	2	2	-	-		
CO-3	1	3	2	2	2	2	2		
CO-4	1	1	2	3	-	2	2		
CO-5	1	1	3	2	2	3	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400504C	IoT (Basic)	03	-	04	02	09	06	

Legend:

Cl: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times Cl \text{ hours}) + (0.5 \times Ll \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Theory Assessment (TA)			Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400504C	IoT (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as
 externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and selflearning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these
 activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment
 may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist &
 rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504C

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs
	Unit 1 O Introduction to InT	Number(s) CO-1 and
TSO.1. a. Describe the concept of IoT.	Unit-1.0 Introduction to IoT	CO-1 and CO-5
TSO.1. b. Explain the functions of each block of the	1.1 Basics of IoT, concepts of IoT, History of IoT	
Basic IoT system.	1.2 Basic IoT System and its building blocks	
TSO.1. c. Compare features of various IoT	1.3 Various platforms for IoT (e.g. AWS, AZURE, GCP)	
platforms	1.4 Introduction to Python programming and IoT software	
TSO.1. d. List IoT Real time Applications.	1.5 Applications of IoT	
TSO.1. e. Describe the functioning of given real- time applications		
TSO.2. a. Explain various communication protocols.	Unit 2.0 IoT Communication Protocols	CO-1 and
TSO.2. b. Explain working and application of blue tooth	2.1 Basics of given communication protocol alongwith its applications	C02
TSO.2. c. Explain working and application of ZigBee	2.2 Explain Communication Protocols MQTT	
TSO.2. d. Explain working and application of LoRa	2.3 Bluetooth Low Energy	
TSO.2. e. Explain working and application of Wi-fi	ZigBee	
130.2. e. Explain working and application of Wi-li	LoRa	
	Wi-fi	
TSO.3. a. Differentiate between sensor and Actuator.	Unit-3.0 Sensors and Hardware for IoT	CO-1, CO-3 and CO-5
TSO.3. b. Classify IoT sensors on the basis of their application.	3.1 Sensors and Actuators, Transducers, Classifications of sensors, IoT Sensors	
TSO.3. c. Describe the function of each block of Node MCU.	3.2 Development Boards, classifications, and basics of wireless networks, WiFi libraries	
TSO.3. d. Explain the procedure to connect sensors with Node MCU.	3.3 Introduction to node MCU, block diagram, functions, interfacing with sensors and publishing data on webserver	
	3.4 Device integration with node MCU	
	3.5 Interfacing of sensors with boards	
TSO.4. a. Define APIs and its uses	Unit.4.0 IoT APIs and its Integration	CO-1 and
TSO.4. b. Explain working and application of REST.	4.1 Explain APIs and its use	CO-4
TSO.4. c. Explain working and application of SOAP	4.2 Explanation of given IoT APIs along with its	
TSO.4. d. Explain working and application of json	applications 4.3 MQTT, Broker, subscriber, publisher	
TSO.4. e. Explain the integration of API in IoT	4.4 REST	
application development.	SOAP	
approace. acromomer	4.5 JSON	
	4.6 Programming API using Python	60.4 1
TSO.5. a. Differentiate between industrial IoT and IoT.	Unit. 5.0 IoT Applications: -	CO-1 and CO-5
TSO.5. b. Describe the applications of IoT in the medical field.	5.1 Industrial IoT and Internet of everything5.2 IoT for consumer electronics products	
TSO.5. c. Describe the medical applications of IoT	5.3 IoT for Medical applications	
in the agriculture field.	5.4 IoT for Agriculture	
TSO.5. d. Describe the innovative IoT applications.	5.5 IoT for security and Law enforcement	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504C

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant CosNumber (s)
LSO 1.1 List various IoT platforms. LSO 1.2 List Down broad features of given platforms. LSO 1.3 List IoT based features in python language.		Prepare a list of platforms used for IoT. Prepare a list of features of above IoT platforms. Prepare a list of features provided by	CO-1
LSO 2.1 Arduino connection with Arduino IDE. Connect Bluetooth with Arduino. verification of data communication withBluetooth.	2.	python language for IoT applications. Establish connectivity between various components of IoT. Establish connection between Arduino and Bluetooth module. Establish connection using WiFi	CO-2
LSO 3.1 Measure the temperature of the givensensor. LSO 3.2 Measure the humidity of the given sensor. LSO 3.3 Measure the pressure of the given sensor.	3.	Publish data on the IoT platform. Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system. Measure the humidity of a remotely located humidity sensor Using IOT based humidity data-monitoring system. Measure the pressure of a remotely located pressure sensor Using IOT based pressure data-monitoring system.	CO-3
LSO 4.1 Working with APIs. LSO 4.2 Implementation of APIs using POSTMANApplication.	4	Download and Configure POSTMAN Application Verify REST APIs through POSTMAN. Verify JSON APIs through POSTMAN. Verify SOAP APIs through POSTMAN.	CO-4
LSO 5.1 Identification of components for variousapplications. LSO 5.2 Estimate the cost for components.	5.	Identify components for given project Estimate the cost to make Project working.	CO-5

- **L)** Suggested Term Work and Self Learning: S2400504C Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.

b. Micro Projects:

- 1. Prepare a report on IoT Systems using Internet data.
- 2. Market survey to identify various types of IoT sensors and its pricing.
- 3. Interface IR sensor with Arduino and send the data to Arduino cloud.
- 4. Send IoT data using Node MCU to things Speak cloud.
- 5. Interface Bluetooth module with Arduino and send data using the Bluetooth module.

c. Other Activities:

- 1. Seminar Topics: "Future of IoT"
 - "Technologies for IoT", "Smart City and IoT"
- 2. Visit to industry for latest IoT setup in industrial process.
- 3. Surveys of market for availability of various types of sensors and its pricing.

- 4. Product Development: Development of projects for real life problem solution using IoT.
- 5. Software Development: various open-source platform operations.

d. Self-Learning Topics:

- 1. IoT hardware and their use for various applications
- 2. IoT sensors technical specifications
- 3. IoT enabled services
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalu	ation Matrix			
	Theory Asses	sment (TA)**	Term Wor	k Assessme	ent (TWA)	Lab Assess	essment (LA)#	
COs	Progressive End Theory Theory Assessment (ETA) Term Work & Self-Learning Assessment					Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	10%	10%	20%		33%	10%	20%	
CO-2	15%	10%	20%		33%	15%	20%	
CO-3	30%	30%	20%		34%	15%	20%	
CO-4	20%	30%	20%	50%		30%	20%	
CO-5	25%	20%	20% 50%			30%	20%	
Total	30	70	20 20 10			20	30	
Marks				50	<u>'</u>			

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under

point- (N)

#: Mentioned under

point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to IoT	5	CO-1	7	3	4	-
Unit-2.0. IoT Communication Protocols	5	CO-2	7	3	2	2
Unit-3.0. Sensors and Hardware for IoT	14	CO-3	21	6	7	8
Unit-4.0 IoT APIs and its Integration	14	CO-4	21	6	5	10
Unit-5.0. IoT Applications	10	CO-5	14	2	4	8
Total Marks	48		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		LA/ELA	
S. No.	Laboratory Practical Titles			rmance	Viva-
3. 140.		COs PRA* PDA** (%) (%)			
1.	Prepare a list of platforms used for IoT.	CO-1	60	30	10
2.	Prepare a list of features of above IoT platforms.	CO-1	60	30	10
3.	Prepare a list of features provided by python language for IoT applications.	CO-1	60	30	10
4.	Establish connectivity between various components of IoT.	CO-2	60	30	10
5.	Establish connection between Arduino and Bluetooth module.	CO-2	60	30	10
6.	Establish connection using WiFi	CO-2	70	20	10
7.	Publish data on the IoT platform.	CO-3	70	20	10
8.	Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
9.	Measure the humidity of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
10.	Measure the pressure of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
11.	Publish the data using Mqtt	CO-4	60	30	10
12.	Download and Configure POSTMAN Applications	CO-4	60	30	10
13.	Verify REST APIs through POSTMAN.	CO-4	60	30	10

		Relevant	PLA/ELA			
S. No.	Laboratory Practical Titles	COs	Performand			
		Number(s)	(%)	(%)	Voce (%)	
14.	Verify JSON APIs through POSTMAN.	CO-4	60	30	10	
15.	Verify SOAP APIs through POSTMAN.	CO-4	60	30	10	
16.	Identify components for given project	CO-5	50	40	10	
17.	Estimate the cost to make Project working.	CO-5	50	40	10	

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriatelyselected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1	Bluetooth Modem- BlueSMiRF Silver	Sparkfun Bluetooth modem	As mentioned above list
2	Postman Software	Open-source downloadable	
3	Node MCU board	Generic	
4	IoT free cloud	Arduino cloud/Thing Speak/Blynk	
5	ATAL Lab Package-1 Package-2	As per the list as address below ATAL Equipment list' (http://aim.gov.in/guidelines-for-school.php).	
	Package-4	(http://dimingovini/gardelines for sensor.php).	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1	Internet of Things Architecture and Design Principles	Raj Kamal	Mc Graw Hills, New Delhi ISBN 13: 978-93-90722-38-4
2	Internet of things (IoT): technologies, applications, challenges and solutions	Edited By BK Tripathy , J Anuradha	CRC Press, ISBN 9780367572921, June 30, 2020

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
3	Internet-of-Things(IoT) Systems: Architectures, Algorithms, Methodologies	by Dimitrios Serpanos & Marilyn Wolf	Springer; 1st ed. 2018 edition (17 January 2018)
4	Custom Raspberry Pi Interfaces: Design and build hardware interfaces for the Raspberry	Pi by Warren Gay	Apress; 1st ed. edition (23 February 2017), ISBN- 10: 9781484224052, ISBN-13: 978-1484224052
5	'Learning Internet of Things',	Peter Waher	Packt Publishing, 2015, ISBN9781783553532, https://lib.hpu.edu.vn/handle/123456789/31693
6	Sensors, Actuatorsand Their Interfaces,	N. Ida	Scitech Publishers, 2014.

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress_and_strain.html
- 5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 6. https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/
- 7. https://wiki.python.org/moin/TimeComplexity
- 8. www.engineerstudent.co.uk/stress_and_strain.html
- 9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 10. Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work.
- 11. https://github.com/OpenRCE/sulley

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504D (T2400504D/P2400504D/S2400504D)

B) Course Title : Drone Technology (Basic)

C) Pre- requisite Course(s) : D) Rationale :

Rapid technological innovation has provided users cutting-edge products at affordable prices. Traditionally, drones had been limited to military use due to high costs and technical sophistication. In recent years, the drone has number of commercial uses and are also proving to be extremely beneficial in places where a mancannot reach or is unable to perform in a timely and efficient manner. Today, drones are used in construction, photography, agriculture, defense, environmental studies and monitoring and other industries to protect the skies, repopulate forests and accomplish much more on a huge scale. This course will acquaint the student with the basic drone technology and applicable drone rules and regulations in India. Considering that the main operational areas of diploma holders, it is essential that he should be exposed to basic drone designing, programming, operating, maintaining and using them safely.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Operate a drone safely by applying appropriate drone rules and regulations.
- **CO-2** Design the structure of drone with drone components and equipment.
- **CO-3** Interface flight controller board with sensors, ESC and radio communication unit in drone technology.
- **CO-4** Use drone simulator and identify different types of ports and connectors of drone.
- **CO-5** Use python programming while drone designing.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)									
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Develop- ment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Managem ent	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	2	-	-	-	3	-	2				
CO-2	3	2	3	3	-	-	-				
CO-3	3	2	3	3	-	-	-				
CO-4	2	-	-	2	-	3	2				
CO-5	-	2	2	3	-	-	-				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course Title	Scheme of Study (Hours/Week)							
Code		Classi Instru (Cl	ction	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L T							
2400504D	Drone Technology (Basic)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)			
se Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
2400504D	Drone Technology (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)
TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars,

A: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504D

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. Describe the various historical evolutionary steps of drone technology TSO 1b. Explain Drone motion based on principle of aerodynamics. TSO 1c. Classify different types of drones and make chart of its application, advantages and disadvantages TSO 1d. Develop attitude to follow proper rules and regulations of drones flying in India. TSO 1e. Explore future prospects of drones in India.	Unit-1.0Introduction to Drone Technology Introduction to Drones and UAV Definition History Drone in Indian aspect Introduction to Flight Dynamics Various types of Drones and theirrespective Applications Multirotor drones Fixed wind structure Drone flights using an understanding of FAA DGCA Digital sky platform RPTO	CO-1
TSO 2a. Explain the use and function of different types of Drone components. TSO 2b. Select suitable drone frame and propellers for given application. TSO 2c. Explain working principle and function of different sensors used in drone technology. TSO 2d. Write use of Gyro sensor and Accelerometer in drone. TSO 2e. Describe different types and capacity of	Drone regulations-No drone zones Unit-2.0 Drone and its Components Drones components Drone frame Propellers Sensors Gyro sensor and Accelerometer Speed and Distance Sensor	CO-2
Battery used in various drone applications. TSO 2f. State the selection criteria of motor for given drone application. TSO 2g. Write advantage of BLDC motors in making of Drones.	 Temp sensor Barometer TOF Sensor Battery Types and Capacity Motors Motor types 	
	 Motor capabilities Application of BLDC motors in drones 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3a. Explain four types of motion used in drone's operation. TSO 3b. Describe the working and applicationsof Electronic speed controller. TSO 3c. Explain the working principle of Flight controller unit used in drone. TSO 3d. Explain Radio communication unit used in drone. TSO 3e. Explain the communication of Flight controller board with motor, ESC and sensors with suitable diagram	Unit-3.0 Drone controller and motion Propulsion and Vertical Motion Controller and Flying Instructions Electronic speed Controller (ESC) Flight Controller Board (FCB) Radio Communication Transmitter and Receiver for radio signal	CO-3
TSO 4a.Describe utility of different communication port used in drone. TSO 4b. Identify different types of connectors and write their specifications TSO 4c. Explain the use of drone simulator software and hardware.	Unit-4.0 Connections and Interfaces of Devicesin Drone and Drone Simulator Communication Port PWM RS232, RS422, RS485 UART CAN I2C Different types of connectors and its specification Drone Simulator software Drone simulator Hardware	CO-4
TSO 5a.Write basic code in Python. TSO 5b. Explain structure and components of a Python program. TSO 5c. write syntax of loops and decision statements in Python. TSO 5d. Explain steps to create functions andpass arguments in Python.	Unit-5.0 Introduction to Python for Drone Python programing refreshers for IoT, AI andDrone Integration of devices with cloud services Microsoft Azure, AWS	CO-5

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504D

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1 Choose suitable materials for makingdrone frame.	1.	Determine the strength of materials used in drones frame.	CO-2
LSO 2 Select suitable materials for making drone propellers.	2.	Determine the strength of materials used in drones Propellers.	CO-2
LSO 3 Use appropriate battery as per need of flight time for specific drone application.	3.	Test different parameters of batteries used in drones	CO-2
LSO 4 Identify suitable motors as per payload of specific drone application.	4.	Test motors suitable for specific Drone application.	CO-2
LSO 5 Operate Gyro sensor and Accelerometer.	5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 6.1 Identify different sensors based on their characteristics. LSO 6.2 Interface different types of sensor in drone.	6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3
LSO 7 Demonstrate four type of drone motion.	7.	Determine thrust/torque of motor by changing different drone motion	CO-2, CO-3
LSO 8.1 Configure Flight control board (FCB) LSO 8.2 Demonstrate use of Flight control board (FCB)	8.	Test and troubleshoot Flight control board (FCB).	CO-3
LSO 9.1 Measure various parameters of sensor LSO 9.2 Interface sensor with flight controller board.	9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2
LSO 10 Use motor with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2
LSO 11 Interface ESC with flight controller board.	11.	Test and perform communication of Flight control board with ESC.	CO-3
LSO 12 Configure radio communication device to control drones	12.	Test and perform communication of Flight control board with RF transceiver.	CO-3
LSO 13.1 Identify different types of ports and connectors of drone. LSO 13.2 Assemble drone component.	13.	Test Hardware assembly for drone.	CO-4 CO-3
LSO 14.1 Identify different motions in drone simulator. LSO 14.2 Operate drone in simulator for specific task	14.	Perform different motion in drone simulator.	CO-4
LSO 15.1 Write code of loop and decision statement in python. LSO 15.2 Interpret loop and decision statement	15.	Build and run loops and decision statements for specific application in Python.	CO-5
LSO 15.3 Debug code of loop and decision statement			
LSO 16.1 Make function in python. LSO 16.2 Interpret given function statement LSO 16.3 Debug code of function in python	16.	Build and Run functions for specific application and pass arguments in Python.	CO-5
LSO 17.1 Identify python programming steps to interface drone components. LSO 17.2 Identify error in python program LSO 17.3 Debug the given python program	17.	Write basic programming in python to interface different component of Drones	CO-5, CO-3

- **L)** Suggested Term Work and Self Learning: S2400504D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.

b. Micro Projects:

- 1. Design drone for simple application.
- 2. Test different sensors, their characteristics and make chart which are used in different drones' applications.
- 3. Download 5 videos on drone design with different components. Watch them and write report on it.
- 4. Write report on Drone application for precision agriculture.
- 5. Survey nearby electronics shop and Prepare report of list of drone component and its specification.
- 6. Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit withspecial comments of drone technology used, material used, cost of printed component.

c. Other Activities:

1. Seminar Topics-History of Drone, Drone regulations, Proximity sensor, Bernoulli's principle apply in drone, Radio communication used in drones, Drone Simulator, Python Programming.

Semester- V

- 2. Visits: Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.
- 3. Surveys: Survey nearby electronics shop and Prepare report of list of drone component and its specification and explore Drone simulator.
- 4. Product Development
- 5. Software Development

d. Self-Learning Topics:

- 1. History of Drones
- 2. Drone in Indian aspect
- 3. Drone regulations
- 4. Principle of aerodynamics for Drones
- 5. Drone simulator
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Assessment (TA)** Term Work Assessment (TWA)				nt (TWA)	Lab Assessment (LA)#		
Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA) Term Work & Self-Lear Assessment				•	Progressive Lab	End Laboratory Assessment		
	Class/Mid	` ' '		Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	10%	10%	10%		10%			
CO-2	30%	30%	30%	33%	30%	30%	30%	
CO-3	30%	30%	30%	34%	30%	30%	30%	
CO-4	15%	10%	15%		15%	20%	20%	
CO-5	15%	20%	15%	33%	15%	20%	20%	
Total	30	70	20	20	10	20	30	
Marks				50				

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under

point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to Drone Technology	6	CO-1	08	03	02	03
Unit-2.0. Drone and its component	12	CO-2	20	05	07	08
Unit-3.0 . Drone controller and motion	12	CO-3	20	05	07	08
Unit-4.0. Connections and Interfaces of Devices in Drone and Drone Simulator	8	CO-4	08	03	02	03
Unit-5.0. Introduction to Python for Drone	10	CO-5	14	04	04	06
Total Marks	48		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/E	LA
S. No.	Laboratory Practical Titles	COs	Perfor	mance	Viva-
3. 140.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Determine the strength of materials used in drones frame.	CO-2	60	30	10
2.	Determine the strength of materials used in drones Propellers.	CO-2	60	30	10
3.	Test different parameters of batteries used in drones	CO-2	50	40	10
4.	Test motors suitable for specific Drone application.	CO-2	50	40	10
5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2	50	40	10
6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3	50	40	10
7.	Determine thrust/torque of motor by changing different dronemotion	CO-2, CO-3	60	30	10
8.	Test and troubleshoot Flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2	60	30	10
11.	Test and perform communication of Flight control board with ESC.	CO-3	60	30	10
12.	Test and perform communication of Flight control board with RF transceiver.	CO-3	60	30	10

		Relevant		PLA /E	LA
S. No.	Laboratory Practical Titles	COs	Perfor	Performance	
3. 140.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
13.	Test Hardware assembly for drone.	CO-4 CO-3	50	40	10
14.	Perform different motion in drone simulator.	CO-4	50	40	10
15.	Build and run loops and decision statements for specific applicationin Python.	CO-5	50	40	10
16.	Build and Run functions for specific application and pass arguments in Python.	CO-5	50	40	10
17.	Write basic programming in python to interface different component of	CO-5,	50	40	10
	Drones.	CO-3			

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/
ImplementationStrategies may be appropriately selected, as per the requirement of the
content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion,
Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations
in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning,
Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational
Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-13
2.	Propellers	10X4.5 CW/Others	1-13
3.	Speed Sensor	3.3 or 5.0Vdc	1-13
4.	Distance Sensor	5Volt operating voltage	1-13
5.	Gyro sensor and Accelerometer	5Volt operating voltage	1-13
6.	Barometer	Altitude tracking, temp range from 25°C to 40°C	1-13
7.	TOF Sensor	Accurate ranging up to 4 m, Fast ranging frequency up to 50	1-13
8.	Battery	Lithium Polymer Battery,2200mAH/others	1-13
9.	Motor	BLDC,1000kv or 1000RPM/volt	1-13
10.	Electronic speed Controller (ESC)	30 Amp,2-4s or cell	1-13

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
11.	Flight Controller Unit	KK 2.1.5/ ArdupilotAPM 2.8/ Pixhawk/others	1-13
12.	Transmitter and Receiver for radio signal	4 channels/6 Channels, 2.4 GHz & 5.8 GHz	1-13
13.	Drone Simulator Software	RC flight simulator	14
14.	Python Software	Hardware required-More than 4 GB RAM, 64-bitCPU preferable	15,16,17

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby&Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
2.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
3.	DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media; First edition 2016, ISBN-978-9352133994
4.	Building Multicopter Video Drones: Build andfly multicopter drones to gather breathtakingvideo footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/101104073
- 2. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
- 3. https://www.scienceabc.com/innovation/what-is-drone-technology.html
- 4. https://www.dronezon.com/learn-about-drones-quadcopters/what-is-drone-technology-or- how-does-drone-technology-work/
- 5. https://www.youtube.com/watch?v=OWaXIK9sHeE
- 6. https://books.google.co.in/books?id=2M0hEAAAQBAJ&printsec=copyright&redir_esc=y #v=onep age&q&f=false

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504E (T2400504E/P2400504E/S2400504E)

B) Course Title : 3D Printing and Design (Basic)
C) Pre- requisite Course(s) : Computer Aided Modeling

D) Rationale :

Additive manufacturing (AM) or Additive layer manufacturing (ALM)

is the industrial production name for 3D Printing. 3D Printing is a process that makes solid objects from a digital model. It involves depositing material either metal, powdered plastic, or liquid in thin layers (2D) to get a 3D object. This basic course on 3D Printing tries to develop understanding of the process of making real object from digital model in the students. It also covers the software/hardware required, various materials used for FDM based 3D Printing and details about printing process parameters. The knowledge gained through this course will help the students to take up advanced course on 3D Printing in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

Develop CAD models for 3D Printing.

Import and Export CAD data in .STL file format to generate GCODE file.

Select suitable FDM based 3D Printing material for given applications.

Select suitable FDM based 3D Printing process parameters for given situations.

Produce products using FDM based 3D Printing processes.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs) Course								ne Specific omes* Os)
Outcomes (COs)		PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	3	2	-	-	2		
CO-2	3	2	-	2	-	-	-		
CO-3	3	3	-	2	3	-	-		
CO-4	3	3	-	2	-	-	-		
CO-5	3	-	3	3	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Scheme of Study (Hours/Week)						
Course Course Code Title		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400504E	3D Printing and Design (Basic)		-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times Cl \text{ hours}) + (0.5 \times Ll \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Assessment Scheme (Marks)							
		Theory Assessment Term Work & Self-Learning Assessment (TWA)		=		(TA) Self-Lea Assessn (TW)		Lab Asse (L		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA		
2400504E	3D Printing and Design (Basic)	30	70	20	30	20	30	200		

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars,

micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504E

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO 1a. Explain CAD-CAM and related terminologies. TSO 1b. Convert the given CAD file format into others. TSO 1c. Transfer the given CAD data to CAM facilities. TSO 1d. Classify 3D Printing processes. TSO 1e. List the advantages of additive manufacturing processes over conventional manufacturing processes. TSO 1f. List typical steps involved in 3D printing of an object from digital model. TSO 1g. Explain reverse engineering steps for 3D Printing. 	Unit-1.0 Additive Manufacturing Introduction and CAD 1.1 CAD-CAM and its integration. 1.2 CAD- Part and Surface modeling. 1.3 CAD file formats. 1.4 Additive v/s Conventional Manufacturing processes. 1.5 Process chain for 3D Printing. 1.6 Classification of 3D Printing Processes. 1.7 Product design and prototyping. 1.8 Reverse Engineering for 3D Printing.	CO1
 TSO 2a. Explain the given STL interface terminology. TSO 2b. Use the given alternative 3D printing interface. TSO 2c. Generate STL file for the given CAD file. TSO 2d. Repair the given STL file. TSO 2e. Apply part orientation and support techniques for the given situation. TSO 2f. Perform slicing of the given CAD model using the given slicing software. TSO 2g. Generate tool path using simulation software for the given situation. 	 Unit-2.0 Data Preparation for 3D Printing 2.1 STL interface Specification, STL data generation, STL data Manipulation. 2.2 Advantages and limitations of STL file format, Open files, Repair of STL files, 2.3 Alternative 3D Printing interfaces. 2.4 Part orientation and support generation, Factors affecting part orientation, Various models for part orientation determination. 2.5 The function of part supports, Support structure design, Automatic support structure generation. 2.6 Model Slicing and Contour Data organization, Direct and adaptive slicing: Identification of peak features, Adaptive layer thickness determination. 2.7 Tool path generation. 	CO1, CO2
 TSO 3a. Explain the given 3D Printing process. TSO 3b. Select FDM 3D Printing materials for the given application. TSO 3c. Select FDM based 3D Printing processes parameters for given application with justification. 	Unit-3.0 Additive Manufacturing Techniques 3.1 Fused Deposition Modeling (FDM), Stereo lithography (SLA), Selective Laser Sintering (SLS), Binder Jetting, Material Jetting, Direct Energy Deposition and Laminate Object Manufacturing. 3.2 FDM based 3D printing process details. 3.3 3D Printing materials and selection for FDM.	CO3, CO4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	3.4 FDM Process parameter for various applications.	
TSO 4a. Identify various Aerospace, Electronics, Health care, Automotive, Construction, Food processing, Machine tool components that can be 3D Printed. TSO 4b. Estimate the cost and time of FDM based 3D printing of the given component.	 Unit-4.0 Application of 3D Printing 4.1 Additive Manufacturing Application Domains: Aerospace, Electronics, Health Care, Defense, Automotive, Construction, Food Processing, Machine Tools 	CO3, CO4
TSO 5a. Select suitable 3D Printer (FDM) and software for the given application with justification. TSO 5b. Analyze the effect of given FDM based 3D printing process parameters using 3D printer software simulation. TSO 5c. List steps to perform 3D scanning of the given object. TSO 5d. Repair 3D scanned digital model. TSO 5e. Set different FDM 3D printing process parameters to get a sound plastic component.	 Unit-5.0 3D Printers and Software and Scanners 5.1 Construction details and working of established FDM based 3D printers for plastics parts. 5.2 Accuracy, Precision and Tolerance in 3D printing. 5.3 3D Printer software- Fusion 360, Solidworks, Onshape, Tinkercad, Ultimaker Cura, MeshLab, Simplyfy 3D, Repetier host, Slic3r, etc. – use and operation of anyone. 5.4 3D Scanners and working. 5.5 Producing a part using FDM based 3D Printer. 	CO4, CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504E

Pract	Practical/Lab Session Outcomes (LSOs) S. No. Laboratory Experiment/Practical Titles		Relevant COs Number(s)	
LSO 1.1. LSO 1.2.	Use CAD software. Prepare digital models of simple 3D entities.	1.	Develop digital models of following simple components using any CAD software: Nut Bolt Network cable Jack Coat button Spoon	CO1
LSO 2.1.	Prepare digital models of complex 3D entities and assemblies.	2.	Develop digital models of following assemblies using any CAD software: Connecting Rod Piston Electric switch Bathroom Tap Mouse	CO1
LSO 3.1.	Surf web for downloading readymade free CAD models.	3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1
LSO 3.2.	Convert one CAD file format into another.			
LSO 4.1.	Use the given Slicing software for 3D Printing.	4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2
LSO 4.2.	Perform slicing operation on the given digital model.			

Practi	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.1. LSO 5.2.	Use the available 3D printing software. Selection of 3D printing process and performance parameters.	5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5
LSO 6.1.	Produce single plastic components using available 3D printer.	6.	Print one single component on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5
LSO 6.2.	Perform post processing operations on printed component.			
LSO 7.1.	Select appropriate layer thickness, tolerance, fit.	7.	Print one assembly on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5
LSO 7.2.	Produce an assembly of plastic components using available 3D printer.			
LSO 8.1.	Choose suitable material for printing flexible structure (assembly of same small pieces to give flexible fabric effect).	8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5
LSO 8.2.	Choose suitable design/shape to create a flexible type structure.			
LSO 8.3.	Produce flexible plastic structure using available 3D printer.			
LSO 9.1.	Selection of 3D printing process parameters.	9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5
LSO 10.1.	Use of available 3D scanner.	10.	Scan the given complex component using	CO5
LSO 10.2.	Develop 3D digital model using scanning approach.		available 3D Sanner.	
LSO 10.3.	Modeling of complex 3D objects using 3D scanning.			
LSO 11.1.	Produce a complex plastic structure using available 3D printer and scanner.	11.	Print the 3D scanned digital model of Pr. No. 10 on available FDM based 3D printer with	CO5
LSO 11.2.	Apply Reverse Engineering approach to exactly 3D print an existing real object.		PLA/ABS material	

- L) Suggested Term Work and Self Learning: S2400504E Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.
- 2. Download 5 videos on 3D printing of different components, watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 3. Print two pieces of same components using ABS and PLA and compare their strength, surface roughness, weight, cost.
- 4. Download two 3D printing free software and try to check their compatibility with your lab printer.

c. Other Activities:

- 1. Seminar Topics:
 - Commercially available 3D printers and software.
 - Strength of 3D printed Plastic components as compared to Die cast Plastic components.
 - Properties of PLA and ABS 3D printing materials.
 - Reverse engineering application of 3D Printing.
- 2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.
- 3. Self-Learning Topics:
 - 3D printing of flexible plastic components.
 - 3D printing of micro/mini components.
 - Conversion of CAD file formats into IGES.
 - 3D scanning process.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	ition Matrix		
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assess	ment (LA)#
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)
	Sem Test			Projects	Activities*		
CO-1	15%	15%	15%	-	-	20%	20%
CO-2	10%	10%	10%	25%	-	10%	20%
CO-3	15%	15%	15%	25%	33%	15%	20%
CO-4	30%	30%	30%	25%	33%	15%	20%
CO-5	30%	30%	30%	25%	34%	40%	20%
Total	30	70	20 20 10			20	30
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	otal ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Additive Manufacturing Introduction and CAD	8	CO1	10	3	3	4
Unit-2.0 Data Preparation for 3D Printing	8	CO1, CO2	10	3	2	5
Unit-3.0 Additive Manufacturing Techniques	8	CO3, CO4	10	5	2	3
Unit-4.0 Application of 3D Printing	12	CO3, CO4	20	5	6	9
Unit-5.0 3D Printers and Software and Scanners	12	CO4, CO5	20	4	6	10
Total	48	-	70	20	19	31

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Laboratory, Dractical Titles	Relevant COs	Perfor	mance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Develop digital models of following simple components using any CAD software: • Nut	CO1	30	60	10
	 Bolt Network cable Jack Coat button 				
2.	 Spoon Develop digital models of following assemblies using any CAD software: 	CO1	40	50	10
	 Connecting Rod Piston Electric switch Bathroom Tap 				
	Mouse				
3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1	30	60	10
4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2	30	60	10
5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5	30	60	10
6.	Print one single component on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
7.	Print one assembly on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10

		Dolovont	PLA/ELA			
S.	Laboratory Practical Titles	Relevant COs	Perform	Viva-		
No.	Laboratory Fractical Titles	Number(s)	PRA*	PDA**	Voce	
		rtuinber(5)	(%)	(%)	(%)	
8.	Model and print a flexible fabric structure with PLA/ABS	CO3, CO4,	40	50	10	
	material (assembly of same small pieces to give flexible fabric	CO5				
	effect)					
9.	Change printing process parameters and repeat experiment	CO4, CO5	40	50	10	
	number 6.					
10.	Scan the given complex component using available 3D Sanner.	CO5	40	50	10	
11.	Print the 3D scanned digital model of Pr. No. 10 on available 3D	CO5	30	60	10	
	based Printer with PLA/ABS material					

Legend:

PRA*: Process Assessment
PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
2.	Parametric Computer Aided Design software	CATIA/Solid works/NX/Creo OR Available with CoE	1,2
3.	3D printer	Fused Deposition Modelling system with complete accessories; Build Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR Available with CoE	6, 7, 8, 10
4.	3D Printing Material	ABS/PLA OR Available with CoE	6, 7, 8, 10
5.	3D Printing software	Latest version of software like: Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab OR Available with CoE	3,4
6.	Post processing equipments and tools	Deburring tools (tool handle & deburring blades), Electronic Digital Caliper, Cleaning Needles, Art knife set, Long nose pliers, Flush cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print removal spatula, Needle file, Cutting mat, Glue stick, Wire stripper etc.	6, 7, 8, 10
7.	3D Scanner and Processing software	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2 mm, Real time onscreen 3D model projection and processing, Wireless technology with an inbuilt touch screen and battery, Extended field of view for capturing both large and small objects, Processing Software OR Available with CoE	10

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Understanding Additive Manufacturing:	Andreas Gebhardt,	Hanser Publisher, 2011
	Rapid Prototyping, Rapid Tooling, Rapid		ISBN: 156990507X, 9781569905074
	Manufacturing		
2.	3D Printing and Design	Sabrie Soloman	Khanna Publishing House, Delhi
			ISBN: 9789386173768
3.	3D Printing and Rapid Prototyping- Principles	C.K. Chua, Kah Fai Leong	World Scientific, 2017
	and Applications		ISBN: 9789813146754
4.	Getting Started with 3D Printing: A Hands-on	Liza Wallach Kloski, Nick	Make Community, LLC; 2nd edition,
	Guide to the Hardware, Software, and	Kloski	2021
	Services Behind the New Manufacturing		ISBN: 9781680450200
	Revolution		

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104265/
- 3. https://www.youtube.com/watch?v=b2Od4YHcLAQ
- 4. https://www.youtube.com/watch?v=EF8CNR-gcXo
- https://www.academia.edu/41439870/Education_Resources_for_3D_Printing
- 6. https://www.think3d.in/landing-pages/beginners-guide-to-3d-printing.pdf
- 7. https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1.3D Printing Projects DK Children; Illustrated edition, 2017
- 2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
- 3.3D Printer Users' Guide
- 4.3D Printer Material Handbook
- 5. Lab Manuals

A) Course Code : 2400504F (T2400504F/P2400504F/S2400504F)

B) Course Title : Industrial Automation (Basic)

C) Pre- requisite Course(s) : Basic Mechanical Engineering, Basic Electrical Engineering, Digital

Semester- V

Electronics and Basic programming skills

D) Rationale :

The technological education and research scenario, all over the world, is turning towards a multidisciplinary one. The present scenario is different as compared to the recent past in the sense that the engineering disciplines are now dilating instead of diverging. The primary reason being that the current technological designs are of highly complex and inter-interdisciplinary nature involving synergistic integration of many aspects of engineering knowledge base. Industrial automation has become an essential part of every modernindustry. Automation helps industry to increase the productivity, quality, accuracy and precision of industrial processes. Stiff competition, higher quality standards and growing concerns of safety & environmental damage have pushed the Industrial sector to adapt state-of-the-art Automation Techniques for effective utilization of resources and optimized performance of the plants. Today engineer is needed to meet the requirements of designing appropriate automation systems. They should have the knowledge of different fields like PLC and PID based Controller, Instrumentation, Networking, Industrial Drives, SCADA/HMI, High speed data acquisition, etc., to become a successful automation engineer. The discipline Automation is enormous in magnitude. The students passing this course will gain basic understanding about industrial automation and will be prepared to take up the advance course in Industrial automation in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply principles and strategies for automation for a given situation.
- **CO-2** Use sensors and input devices as per given situation.
- **CO-3** Test the given PLC for its functionality.
- **CO-4** Use actuators and output devices as per given situation.
- **CO-5** Test the working of various types of control system and controllers

F) Suggested Course Articulation Matrix (CAM):

	Programme Outcomes (POs)								ne Specific omes* Os)
Course Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	-	2	2	-	2		
CO-2	3	2	2	2	-	-	2		
CO-3	3	2	2	2	2	-	2		
CO-4	3	2	2	2	2	-	2		
CO-5	3	2	2	2	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course					e of Study s/Week)	
Code	Title	Classrooi		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400504F	Industrial Automation (Basic)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment Scl	heme (Marks)		
		Theory Ass (T/		Term Work Learning Ass (TW/	sessment	Lab Ass (LA)	essment	(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2400504F	Industrial Automation (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon thecompletion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Society connect, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

J) Theory Session Outcomes (TSOs) and Units: T2400504F

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.1. a Describe Industry 4.0 and its component TSO.1. b Explain different types of automation systems TSO.1.c Identify the type of automation used in a given industry TSO.1.d Analyze the working of industrial processes and products for automation. TSO.1.e Select principles and strategies for automation for a given situationusing 4R's and 1U TSO.1. f Select criteria for factory automation and processes automation for a given industry. TSO.1. g Describe briefly different systems used for industrial automation. TSO.1.h Describe IOT, IIOT and role of robots with respect to automation.	Unit-1.0 Overview of Industrial Automation Introduction to Industry 4.0 and its components, Issues and challenges in automation Need of automation in industries, Principles and strategies of automation, factory automation, process automation Basic elements of an automated system, Structure of Industrial Automation Advanced automation functions, Levels of automations Industrial control Systems- Process and Discrete system Types of automation system: Fixed, Programmable, Flexible Integrated Automation and its application Different systems used for Industrial automation: PLC, HMI, SCADA, DCS, Drives. Introduction to Internet of Things (IoT) and Industrial Internet of Things (IIOT) and its application in Automation.	CO1
TSO.2. a Explain PLC and list its advantages over relay systems. TSO.2.b Distinguish between PLC and a PC, PLC and dedicated controllers. TSO.2.c List the types of PLCs and brands available in the market. TSO.2.d Describe the function of each block of a PLC with the help of a block diagram. TSO.2.e Describe the basic sequence of operation of a PLC with a simple example. TSO.2.f Explain different PLC programming languages withsimple examples. TSO.2.g Describe a simple PLC programming using ladder logic specifying I/O addressing TSO.2.h List the applications of PLC	Role of robots in automation and its components. Unit-2.0 Fundamentals of PLC Introduction to PLC, evolution of PLC Comparison of PLC and Personal Computer(PC) Comparison of PLC and dedicated controllers like PAC and CNC Types of PLC – Fixed, Modular and their types Different brands of PLCs available in the market Building blocks of PLC -CPU, Memory organization, Input-Output modules (Discrete and Analog) Specialty I/O Modules, Power supply PLC programming languages with simpleexamples: Functional Block Diagram (FBD), Instruction List. Structured text, Sequential Function Chart (SFC), Ladder Programming PLC I/O addressing in ladder logic Simple programming example using ladderlogic Applications of PLC: Traffic light control, Elevator control, Motor sequencing control, Tank level control, temperature control, Conveyor system control	CO2
TSO.3.a Identify the commonly used input field devices in PLC installations along with their symbols. TSO.3.b Draw symbol of various switches used in PLC installations describing the function of each switch. TSO.3.c Identify the various digital input devices used in a PLC installation. TSO.3.d Identify the commonly usedsensors as input field devices found in PLC installations. TSO.3.e Describe the working of different types of	Unit 3.0 – Sensors and Input field Devices Analog input devices-Electromagnetic relays, Contactors, Motor starters, Manually operated Switches Toggle switch, pushbutton switch, knife switch and selector switches Mechanically operated switches, Limit switch, Temperature switch (Thermostat), Pressure switch, Level switch and their symbols Discrete/Digital Input device, Constructionand working	CO3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
discrete sensors giving their applications. TSO.3.f Describe the working of different types of advanced sensors giving their applications. TSO.3.g Select Sensors as per the given requirement for ecofriendly automation	 Proximity sensors- Inductive, Capacitive, Optical and ultrasonic Advanced sensors- Construction and workingof Temperature sensors- Thermistor, Thermocouple and Resistance temperature Detector (RTD) Liquid level sensor -Capacitive and Ultrasonic Force -Strain/Weight sensors Flow sensors – turbine flow sensor Pressure sensors- Linear Variable Differential Transformer (LVDT) Inclination sensor -Inclinometer Acceleration sensor- Accelerometer 	
TSO.4.b Describe the construction and working of a given actuator. TSO.4.c Explain the basic principle of operation of a given actuator. TSO.4.d Differentiate between hydraulic and pneumatic actuators TSO.4.e Explain the basic principle of operation of a given control valve. TSO.4.f Select actuators and valves as per the given requirement for ecofriendly automation. TSO.4.g Develop different hydraulic and pneumatic circuits for simple application. TSO.4.h Identify the commonly used output field devices in PLC installations TSO.4.i Draw the symbol of various output devices used in PLC installations describing the function of each. TSO.4.j Select output devices for a PLC installation as per the requirement.	Unit 4.0- Actuators and output Devices Introduction to actuators, Classification ofactuators Mechanical actuators -Translational and rotation motion, kinematic chains, cams, gears, belt and chain drives, bearings Hydraulic and Pneumatic actuators- linear and rotary actuators, single and doubleacting cylinder, directional, process and pressure control valves Electrical actuators • Electromechanical actuators Construction, working and application of Stepper motors, AC/DC Servo motors, BLDC Motor (Very brief) • Electrohydraulic actuators-Construction, working and application of Electro- hydrostatic actuator (EHA), ON/OFF Electro-hydraulic Rotary Actuator (E2H90, Control Valve Rotary Actuator (E2HR), Solenoid valve Thermal actuators -Construction, working and application of Hot-And-Cold-Arm Actuators, Chevron- Type Actuators Magnetic actuators- Construction, working principle and application of Moving coil actuators, moving magnet actuator, Moving iron actuator Selection criteria of actuators Other Output devices- Indicators, Alarms Pilot Lights, Buzzers, Valves, Motor starters, Horns and alarms, Stack lights Control relays, Pumps and Fans.	CO4
TSO.5.a Describe the basic process control system with the help of a block diagram TSO.5.b Explain the types of control available in a process control TSO.5.c Describe the different types of controllers in a closed loop systemwith the help of a block diagram TSO.5.d Describe the construction, working and application of a given control system components.	Unit 5.0– Control System Block diagram of a basic control system Open and closed loop system, their transfer function First order and second order system and their output response and parameters Different types of inputs-step and ramp Types of control – On-off, Feed forward, Open loop and closed loop control and Transfer function	CO5

SBTE, Bihar

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	P-I Controller	
	P-D Controller	
	PID Controller	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504F

Practical/Lab Session Outcomes (LSOs) S		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Identify various building blocks and major automation components in a given robotic system LSO 1.2 Identify various building blocks and major automation components in a given electrical drives	1.	Identify major automation components in a given system	CO1
LSO 1.3 Analyze and plan the steps to automate the given system.	2.	Analyze given traditional machine in the laboratory for and identify thesteps and components required to automate it.	
LSO 1.4. Identify the building blocks of a given typical SCADA system LSO 1.5. Identify the symbol library of SCADA software	3.	Use Scada software for simple application	
LSO 2.1 Identify the various parts and front panel status indicators of the given PLC.	4.	Observe various parts and frontpanel indicators of a PLC	CO2
LSO 2.2 Identify different input and output devices that can be connected to a given PLC.	5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	
LSO 2.3 Test the analog input and output lines of the given PLC.	6.	Identify Analog input and output lines of a PLC	
LSO 2.4 Test the digital input and outlines of the given PLC.	7.	Identify digital input and output lines of a PLC	
LSO 2.5 Use PLC to control the devices like Lamp, Alarm, motor using push button switches	8.	Practice using PLC to control various digital and analog output devices	
LSO 3.1. Test the response of digital inductive proximity sense or used to detect different types of materials	9.	Identify different types of digital inductive proximity sensor and itsuse	CO3
LSO 3.2. Test the response of digital capacitive proximity sensors used to detect o different materials	10.	Identify different types of digital capacitive proximity sensor and itsuse	
LSO 3.3. Test the response of digital optical proximity sensor used to detect different materials	11.	Identify different types of digital optical proximity sensor and its use	
LSO 3.4. Test the response of digital ultrasonic proximity sensors used to detect different materials	12.	Identify different types of digital ultrasonic proximity sensor and itsuse	
LSO 3.5. Use thermistor to measure temperature of a given material	13.	Identify different types of thermistor and its use	
LSO 3.6. Use Thermocouple to measure the temperature of a given liquid and plot the output voltage versus temperature	14.	Observe the conversion of temperature to electric parameter conversion of a Thermocouple	
LSO 3.7. Use RTD to control the temperature of an oven	15.	Observe different types of RTDs usedin industries for temperature measurement	
LSO 3.8. Use flow sensors to measure the flow of a given liquid or gas	16.	Observe different types of flow sensors used in industries for flow	

Pra	actical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles measurement	Relevant COs Number(s)
LSO 3.9. U	Jse pressure sensors to measure the pressure of a liquid or gas	17.	Observe different types of pressure sensors used in industries for pressure measurement	
LSO 3.10.	Use load cell for measurement of mechanical force/weight.	18.	Observe the different types of loadcell used in industries for force/weight measurement	
LSO 4.2 D LSO 4.3 D LSO 4.4 D LSO 4.5 D	resign and actuate pneumatic circuit for lift control resign a pneumatic system that rivets the pockets on jeans resign pneumatic circuit to open and close the security gate and control the speed. Resign a circuit for speed control of hydraulic motor meter out circuit by using 4/3 DC valve. Resign a circuit for speed control of double acting cylinder meter in by using 4/2 dc solenoid valve. Resigning a circuit for speed control of double acting cylinder meter out by using 4/3 solenoid valve	19.	Design and actuate pneumatic/ hydraulic circuit for the given situation	CO4
LSO 4.7 D	irect acting of hydraulic motor	20.	Operate hydraulic motor	
LSO 4.8 O	perate stepper motor and control the motor by changing number of steps, the direction of rotation and speed.	21.	Operate stepper motor	
	dentify the components of thermal and magnetic actuators available in the laboratory. Use thermal and magnetic actuators	22.	Thermal and magnetic actuators	
LSO 5.1	Test the output response of a open loop closed loop and feed forward path	23.	Analyze the given system to studyopen loop, closed loop and feed forward path.	CO5
LSO 5.2	Build and test the output response of a first order system for a step input using a CRO	24.	Analyze the given first order system and its transfer function and output response	
LSO 5.3	Build and test the response of a second order system for a step input using CRO. Also mark various parameters	25.	Analyze the given second order system and its transfer function andoutput response	
LSO 5.4	Test the Output response of an on- off and Proportional control-based level control system.	26.	Analyze the given water level control system with on-off, Proportional control.	
LSO 5.5	Test the Output response pf a P+I+D based level control system.	27.	Analyze the given water level control system with P+I+D control.	

- **L)** Suggested Term Work and Self Learning: S2400504F Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. State three advantages of using programmed PLC timer over mechanical timing relay.
 - ii. Prepare a list of opensource PLC software
 - iii. Prepare a list of opensource SCADA software.

- iv. List the practical applications of PLC systems
- v. List the practical applications of SCADA systems.
- vi. Compare the PLC and PC with regard to:
 - Physical hardware differences
 - Operating environment
 - Method of programming
 - Execution of program
- vii. Prepare classification chart of different types of actuators.
- viii. Differentiate between Nano and micro actuators.

b. Micro Projects:

- 1. Develop a relay-based motor control automation such that the motor reverses its direction when the limit switches are activated.
- 2. Develop a simulation to connect analog and digital input to the PLC.
- 3. Develop a simulation to connect analog and digital output to the PLC.
- 4. Develop a simple automatic water level controller using magnetic float switch.
- 5. Develop a simple automatic door system using optical sensor and linear actuator.
- 6. Troubleshoot the faulty equipment/kit available in automation laboratory
- 7. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
- 8. Develop a working model of a given application using given actuators and valves.

c. Other Activities:

- 1. Seminar Topics- PLC architecture, Different types of sensors, Industrial Applications of PLC and SCADA
- 2. Visits Visit any industry with full or semi automation and prepare a report on type of automation used.
- 3. Surveys-Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
- 4. Product Development- Develop a prototype automatic railway crossing system
 Software Development- Download any opensource software for PLC and install on your laptop/PC and carry out basic PLC programming
- 5. Surveys carry out market survey for different types of electrical actuators available and prepare the comparative technical specifications of electrical actuators used in industries.
- 6. Visit industry and prepare a report on different types of hydraulic and pneumatic circuits used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.

d. Self-Learning Topics:

- 1. Use of PLC for different industrial applications
- 2. Use of sensors in commercial field
- 3. Use of sensors in home automation
- 4. Compare Specifications of PLCs of different manufacturers of any one type PLC

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix				
	Theory Assessment (TA)**			Term Work Assessment (TWA)			Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Wo	ork & Self-Lo Assessmer	•	Progressive Lab	End Laboratory Assessment		
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	15%	15%	20%		30%	20%	20%		
CO-2	20%	25%	20%		20%	25%	20%		
CO-3	25%	20%	20%	30%	20%	20%	20%		
CO-4	25%	20%	20%	20%	30%	20%	20%		
CO-5	15%	20%	20%	50%		15%	20%		
Total	30	70	20 20 10			20	30		
Marks			1	50					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)
#: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Un	it Title and Number	Total	Relevant	Total	al ETA (Marks)			
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0	Overview of Industrial Automation	8	CO1	11	3	4	4	
Unit-2.0 Fundamentals of PLC		12	CO2	17	5	5	7	
Unit-3.0	Sensors and Input field Devices	9	CO3	14	4	6	4	
Unit-4.0	Actuators and Output Devices	10	CO4	14	4	6	4	
Unit- 5.0 Control System		9	CO5	14	4	5	5	
	Total Marks	48		70	20	26	24	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant Cos	PLA /EL		A	
		Number	Perforn	•	Viva-	
S. No.	Laboratory Practical Titles	(s)	PRA*	PDA**	Voce	
		. ,	(%)	(%)	(%)	
1.	Identify major automation components in a given System	CO1	50	40	10	
2.	Analyze given traditional machine in the laboratory for	CO1	50	40	10	
	and identify the steps and components required to automate it.					
3.	Use Scada software for simple application	CO1	50	40	10	
4.	Observe various parts and front panel indicators of a PLC	CO2	50	40	10	
5.	Observe different types of switches and theirsymbols sensors, lamp, alarm, motor, fan used in a PLC	CO2	50	40	10	
6.	Identify Analog input and output lines of a PLC	CO2	50	40	10	
7.	Identify digital input and output lines of a PLC	CO2	50	40	10	
8.	Practice using PLC to control various digital and analog output devices	CO2	50	40	10	
9.	Identify different types of digital inductiveproximity sensor and its use	CO3	50	40	10	
10.	Identify different types of digital capacitiveproximity sensor and its use	CO3	50	40	10	
11.	Identify different types of digital optical proximity sensor and its use	CO3	50	40	10	
12.	Identify different types of digital ultrasonicproximity sensor and its use	CO3	50	40	10	
13.	Identify different types of thermistors and its use	CO3	50	40	10	
14.	Observe the conversion of temperature toelectric parameter conversion of a Thermocouple.	CO3	50	40	10	
15.	Observe different types of RTDs used in industries for temperature measurement	CO3	50	40	10	
16.	Observe different types of flow sensors used inindustries for flow measurement	CO3	50	40	10	
17.	Observe different types of pressure sensors used in industries for pressure measurement	CO3	50	40	10	
18.	Observe the different types of load cell used inindustries for force/weight measurement	CO3	50	40	10	
19.	Design and actuate pneumatic/ hydraulic circuitfor the given situation	CO4	50	40	10	
20.	Operate hydraulic motor	CO4	50	40	10	
21.	Operate stepper motor	CO4	50	40	10	
22.	Thermal and magnetic actuators	CO4	50	40	10	

		Relevant Cos		PLA /EL	.A
C No	Laborator Booking Title	Number	Perform	Viva-	
S. No.	Laboratory Practical Titles	(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
23.	Analyze the given system to study open loop, closed loop and feed forward path.	CO5	50	40	10
24.	Analyze the given first order system and its transfer function and output response	CO5	50	40	10
25.	Analyze the given second order system and itstransfer function and output response	CO5	50	40	10
26.	Analyze the given water level control system with on-off, Proportional control.	CO5	50	40	10
27.	Analyze the given water level control system withP+I+D control.	CO5	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment, Tools	Broad Specifications	Relevant
No.	and Software		Experiment/Practical Number
1.	SCADA software (reputed make like Allen Bradley, Siemensetc.,)	Ready-to-use symbol library, React and respond in real-time, Real-time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open-source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	3
2.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle switches, push to ON switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like	4,5,6,7,8

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	
3.	Proximity sensors kit	The kit should comprise of the following proximity sensor - Inductive Proximity Sensor, Capacitive Proximity Sensor, Magnetic Sensor, Optical Sensor, Audio and LED indicator for the object detection. Along with learning material	9,10,11,12
4.	Temperature transducer kit	Temperature Transducers Test Bench includes different types of temperature sensors including bimetallic strip, RTD, thermocouple, thermistor, RTD/thermocouple temperature display and thermistor, temperature display, heater, fan, switches and its indicator. Separate heater and fan chamber withstand. On panel digital voltmeter, digital ammeter, RTD/thermocouple temperature display, NTC temperature display, toggle switch for heater and fan with indicator, experiments configurable throughpatch board, heavy duty Test bench, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration.	12,13,14
5.	Pressure transducer kit	Pressure transducer kit should include different types of pressure sensors including capacitive pressure transducer, load cell, bourdon tube pressure gauge, and pressure vessel. Pressure vessel with pressure gauge, safety valve, non-returning valve bourdon gauge and capacitive transducer and air compressor, on panel digital voltmeter, digital ammeter, 4-20ma display, 0-10V DC display, toggle switch for compressor, load cell withsuitable weight, experiments configurable through patch board, self -contained, bench-mounting arrangement, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration. Detailed experiment manual should be supplied with the kit.	16
6.	Flow sensor kit	Turbine flow sensor kit	15
7.	Strain Gauge kit	The kit should provide study of Strain Gauge and their application for measurement of Strain. It should help to study bridge configuration of Strain Gauge and the signal conditioning circuits required to measure strain. It should use cantilever beam arrangement to produce strain on Strain Gauge. The Strain Gauges are firmly cemented to the cantilever at the point where the strain is to be measured. Weights are placed on free end of cantilever. Strain developed changes the resistance of Strain Gauge which is detected by full bridge configuration. It should comprise of Seven-segment LED display showing strain in micro strain units. Different weights should be provided to perform linearity and sensitivity experiments. Detailed experiment manual should be supplied with the kit. Testpoints to observe input output of each block, onboard gain and offset null adjustment, built in DC Power Supplies, 3½ digits LED display, onboard Cantilever arrangement, high repeatability and reliability	17

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical
			Number
		The kit should be capable of performing following	
		experiments:Measuring strain using strain gauges and	
		cantileverassembly.	
		Determination of linear range of operation	
		of strainmeasurement.	
0	Cut costions of numbs	Determination sensitivity of the kit	10
8.	Cut sections of pumps, actuators, valves and accessories	Suitably cut and mounted on a sturdy base to show the internal	18
	used in hydraulic systems	details.	
9.	Working models of	Working models mounted on sturdy base to	18
	pumps, actuators, valves	demonstrate theoperation.	
	and accessories used in		
10.	hydraulic systems Working models of pumps,	Working models mounted on sturdy base to	18
10.	actuators, valves and	demonstrate theoperation.	10
	accessories used in	·	
	pneumatic systems		
11. 8	3 Oil Hydraulic trainer	Mounted on sturdy base fitted with all standard units andaccessories to create various hydraulic circuits.	18
		Hydraulic trainer with simulation	
		software Pneumatic trainer with	
		simulation software	
		Filter Regulator Combination with Lubricator (FRL	
		Unit) withpressure gauge, Junction Box with slide valve, Push Button Valve, 3/2 NC Roller lever valve	
		,3/2 NC Roller lever valve	
		,5/2 Double external pilot operated valve, 5/2	
		External pilot operated valve with spring return, 5/2	
		Hand lever with spring return, 5/2 Hand lever valve	
		with detent – for maintained pilot operation of a SAC, 5/2 Valve with Lever head, 5/2 Value with	
		Mushroom head, Flow control valve – Metering IN &	
		OUT, Shuttle Valve (OR valve), Quick ExhaustValve	
		with Quick coupler plug	
		Double Acting Cylinder (DAC) with Quick coupler Couplet (with passesseries Corony driver for	
		socket (with accessories: Screw driver – for cushioning adjustment), Single Acting Cylinder (SAC),	
		Swivel fitting assembly with Quick coupler plug, Multi	
		distributor fittings (for cascading circuit designing)	
		 Single Solenoid Valve with Spring Return (with LED), Double Solenoid Valve (with LED), Magnetic Reed Switch, 	
		Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays,	
		Electrical	
12	Proumatic Trainer	Push Button Unit, Electrical Selector Switch Unit, Timer Mounted on sturdy base fitted with all standard units	10
12.	Pneumatic Trainer	Mounted on sturdy base fitted with all standard units and accessories to create various Pneumatic circuits.	18
		Pneumatic trainer with simulation software	
		Filter Regulator Combination with Lubricator (FRL Unit)	
		with pressure gauge, Junction Box with slide valve	
		 Push Button Valve, 3/2 NC Roller lever valve, 3/2 NC Roller lever valve, 5/2 Double external pilot operated 	
		valve (Memoryvalve)	
		• 5/2 External pilot operated valve with spring return,	
		5/2 Hand lever with spring return, 5/2 Hand lever valve	
		with detent, 5/2 Valve with Lever head ,5/2 Value with Mushroom head,	
		Flow control valve, Shuttle Valve (OR valve), AND	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		 valve Quick Exhaust Valve with Quick coupler plug, Double Acting Cylinder (DAC) with Quick coupler socket, Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug Aluminum Profile Table Top, Profile Table Top, Miniature Double Acting Cylinder (DAC), Single Solenoid Valve with Spring Return, Double Solenoid Valve (with LED) Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit (Black Selector – 1 no, Green Push Button – 1 no), Timer, Simulation software 	
13.	Advanced Electro - Hydraulic and Electro - Pneumatic Hardware systems with work stationsand simulation software	Electro - Hydraulic and Electro - Pneumatic Hardware systemswith PLC and simulation software Profile plate, Frame with Castor Wheels, Filter, Lubricator, Regulator with pressure gauge, Hand Slide Valve, Connectioncomponent set, Plastic Tubing, Power Supply & cables, Pressure Gauge, 3/2 Way double solenoid valve	18
14.	Output devices	Servomotor, DC motor, AC motor, stepper motor, Conveyer Belt control by PLC, water level control etc.	18,19,20
15.	Thermal actuators	Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	21
16.	Magnetic actuators	Moving Coil Controllable Actuators, Moving Iron ControllableActuator	21
17.	Open and closed loop control system kit	Open and closed loop system kit should be able to measure theoutput response using CRO	22
18.	First and second order control system	First and second order system with input and output terminalsprovision	23,24
19.	Process control system with feed forward path kit	Process control system with feed forward path kit with input and output terminals provision	22
20.	PID Controller Test Bench	PID Controller Test Bench is a complete setup to control process through two-point (on/off) and three-point (PID) controllers. Industrial PID controller with RS485 communication facility, Thermocouple temperature sensor, Float switch for detection of water level, Temperature measurement and control, User friendly software, USB Interface, Heavy duty Test bench, Electrical control panel, Leak proof sturdy piping and tanks, SS Sump tank for inlet and outlet of water, Enhanced electricalsafety considerations, Caster wheel (with locking mechanism) at the legs of Testbench for easy movement.	25,26

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005,ISBN13: 9781401884260
2.	Programmable Logic Controllers	Petruzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN:9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN:9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and IndustrialAutomation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015,ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN:9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103,9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978- 1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003,ISBN:0750658053

(b) Online Educational Resources:

- 1. Process Automation Control- online Tutorial: www.pacontrol.com
- 2. PLC product: www.seimens.com
- 3. www.ab.rockwellautomation.com
- 4. PLC product: www.abb.co.in
- 5. Different product of PLC and Peripherals, Smart Tile CPU Board, All in one lighting energy controller, Classic PLC www.triplc.com
- 6. Simulation software:http://plc-training-rslogix-simulator.soft32.com/free-download/
- 7. Simulator:www.plcsimulator.net/
- 8. https://www.youtube.com/watch?v=y2eWdLk0-Ho&list=PLIn3BHg93SQ_X5rPjqP8gLLxQnNSMHuj-
- 9. https://www.youtube.com/watch?v=86CrhxgAKTw

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- Lab Manuals

A) Course Code : 2400504G (T2400504G/P2400504G/S2400504G)

B) Course Title : Electric Vehicle (Basic)

C) Prerequisite Course(s) :
D) Rationale :

Fossil fuel consumption and its adverse impact on the environment have led most nations in the world to adopt electric vehicles for mobility. Most automobile companies are switching from internal combustion engines to electric, a cleaner, and more sustainable alternative. But, in the present scenario, the automobile industries are facing a shortage of skilled technicians needed for the transition to electric drives as the primary source of motive power. There is a huge skill gap between industry and academia when it comes to the task of taking the entire automobile industry towards electric mobility. Therefore, this basic course on an electric vehicle is included in the curriculum of the diploma programme as an open elective course to fill this gap and gain a basic understanding of the importance and necessity of electric vehicles. This course tends to enable participants with multidisciplinary exposure and give them a brief idea about electric vehicles, and their importance. This course gives some basic technical foundations regarding electric vehicles to help them move on to advanced electric vehicle courses.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the student will be able to-

- **CO-1** Classify the EVs based on configurations.
- **CO-2** Identify relevant Motors for the given EV application.
- **CO-3** Test the performance of batteries used for EV applications.
- **CO-4** Distinguish between the EV Charging stations based on their Configurations.
- **CO-5** Follow regulatory requirements and policies for EV Industry.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	-	2	2	-	3			
CO-2	3	2	2	2	2	1	3			
CO-3	2	2	3	3	2	2	3			
CO-4	2	2	1	2	2	1	2			
CO-5	1	1	-	-	3	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

			Scheme of Study (Hours/Week)						
Course Course Code Title		Classroom Instruction (CI)		Lab Instructio n(LI)	NotionalHours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400504G	Electric Vehicle (Basic)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)		
Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course	Course Title			(TV	VA)			- F
Cou	Course little	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (1
2400504G	Electric Vehicle (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504G

N	Najor Theory Session Outcomes (TSOs)	Units	Relevant COs
TSO 1a. I	Identify the types of the vehicle based on the	Unit-1.0Introduction to Electric Vehicle	Number (s)
TSO 1b. 5	Identify the types of the vehicle based on the physical features, specification data and information. State the advantages of EVs over Conventional IC Engine Vehicles. Identify different components of Electric Vehicle systems Explain the functions of different components of the EV	Review of Conventional Vehicle Engine System Electric Vehicle (EV)	CO1
TCC 2	Fundamental and the second state of the second	ChargingSystem.	600
TSO 2a. TSO 2b. TSO 2c.	Explain the general characteristics of motorsused in EV List different types of motors used in EV Explain the working principles of motors used in	Unit-2.0 Electric Motors used in EVs Electric Motors for EV applications • General Characteristics of motors	CO2
TSO 2d.	EV applications Interpret the nameplate ratings of the motorsfor EV applications.	 Types of Motors: DC, Brushless DC, Induction, Permanent Magnet Synchronous 	
TSO 2e.	Explain the motor selection criteria forparticular EV applications.	Motors, SwitchedReluctance Motors	
TSO 2f.	Describe the Mechanical and ElectricalConnections of Motors.	Rating of Motors Selection Criteria Physical Location Connection of Motors: Mechanical Connections and Electrical Connections	
TSO 3a.	List the batteries used in EVs for energy	Unit- 3.0 EV Batteries and Energy Storages	CO3
	SO 3b. State various parameters related to	Types of Batteries: Lead Acid, Nickel Based, Lithium Based	
TSO 3c.	Explain the charging and discharging process of the given batteries.	Battery Parameters Charging (AC) and Discharging (DC) Process	
TSO 3d.	Explain the salient features of Lithium lonbatteries	Lithium Ion Batteries Fuel Cells, Fuel Cell Storage System	
TSO 3e. TSO 3f.	Explain the Fuel Cell Storage System. Identify various sensors installed for monitoringBattery condition.	Battery Condition Monitoring Battery Management System (BMS) • Need of BMS	
TSO 3g.	Explain Battery Management System in EV usingBlock Diagram.	Block Diagram of BMS Battery Disposal and Recycling	
TSO 3h.	Describe the procedure of battery Disposal and Recycling		
TSO 4a.	Identify different types of diodes andtransistors.	Unit- 4.0 EV Charging Systems	CO4
TSO 4b.	Describe the testing procedure for the given Diode and Transistor.	Power electronics in EV • Power electronics components	
TSO 4d.	Explain the working principles of the givenpower electronic converter circuit.	RectifiersDC to DC Converter	
TSO 4d. TSO 4e.	Describe the types of Charging Systems Describe different Components of the ChargingSystem	DC to AC Converter Charging System Three of sharping Systems	
TSO 4f.	Explain the working of the Charging	Types of charging SystemsComponents of Charging Systems	

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number (s)
	Systemusing a single-line diagram.	Single line Diagram of Charging System	
TSO 5a.	Understand the Rules and Regulations set by theGovernment for selecting and manufacturing various components of an	Unit- 5.0 Regulatory Requirements and Policies for EV Industry	CO5
	electric vehicle.	Rules and Regulations set by the Indian	
TSO 5b.	Understand the Policies for E-Vehicles.	government for the	
TSO 5c.	Appreciate the importance of the reduction	designer/manufacturer of EVs.	
	ofgreenhouse gases in the environment.	Policies in India	
		Global Policies for E- Vehicles.	
		Carbon Footprint Issues	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504G

Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number (s)	
LSO 1.1 Use the relevant digital meter for the given application. LSO 1.2 Use a measuring instrument for the given application. LSO 1.3 Use safety kits while working in the laboratory.	1.	 Practice using digital meters such as AC, DC Clamp Meters, Digital Multimeters, Lux Meters, etc. Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter. Practice using safety kits. 	CO1	
LSO 2.1 Identify the motors used in EV applications LSO 2.2 Identify the given motor terminals	2.	Identification of motors used in EVs	CO2	
LSO 3.1 Identify the batteries available in the laboratory. LSO 3.2 Measure an open circuit voltage of the given battery. LSO 3.3 Determine the Ampere -Hour Capacity of the given battery with a given load. LSO 3.4 Test the performance of the given battery with different charging rates and at different ambient temperatures LSO 3.5 Demonstrate the effect on the state of health of the battery after several charge/discharge cycles. LSO 3.6 Evaluate the temperature cut-off point for the given BMS.	3.	 Testing of Batteries used in EVs Battery Management System 	CO3	
LSO 4.1 Identify the Electrical & Electronics components available in the laboratory using Digital Multimeters. LSO 4.2 Test the given power electronic components using digital meters LSO 4.3 Identify the given Power Electronic Circuits used in EVs LSO 4.4 Identify the components of the Charging System LSO 4.5 Recognize the types of Charging Systems available in the Laboratory	4.	Power electronic circuits Identification of Charging systems	CO4	

L) Suggested Term Work and Self-Learning: S2400504G Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Collect the information related to the performance of different types of electric vehicles and prepare acomparative report on economic and environmental analysis.
- 2. Collect specifications of different EVs available in the market.
- 3. Build and test a prototype circuit of converters used in an electric vehicle.
- 4. Visit a nearby Electric vehicle showroom or service centre & collect information on different types of motors used in electric vehicles and prepare a comparative report on their performance,
- 5. Visit a nearby charging station and prepare a report describing the layout and components of the charging station.

c. Other Activities:

1. Seminar Topics:

- Communication Systems, Sensors and batteries used in Evs.
- Technological advances in Evs
- Comparison of EVs manufactured by different companies.
- 2. **Surveys** Survey the market and gather information on the electric vehicle manufacturers and submit the report.
- 3. **Product Development** Develop an electric vehicle prototype using locally procured hardware components.

d. Self-Learning Topics:

- Global Manufacturers of EV
- Indian Manufacturers of EV
- Motors used in EV
- Batteries used in EV
- Cost comparison of EVs in market
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

Course Evaluation Matrix										
	Theory Assessment (TA)** Term Work Assessment (TWA)					Lab Assessment (LA)#				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term W	ork & Self-Lo Assessmer	•	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)			
	Sem Test			Projects						
CO-1	20%	15%	20%		33%	10%	20%			
CO-2	20%	20%	20%		33%	15%	20%			
CO-3	20%	30%	20%		34%	15%	20%			
CO-4	20%	25%	20%	50%		30%	20%			
CO-5	20%	10%	20%	20% 50%		30%	20%			
Total	30	70	20 20 10			20	30			
Marks				50	1					

Legend:

* : Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)
: Mentioned under point- (O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Electric Vehicle	8	CO1	12	3	5	4
Unit-2.0 Electric Motors used in EVs.	10	CO2	14	4	5	5
Unit- 3.0 EV Batteries and Energy Storages.	14	CO3	20	5	8	7
Unit- 4.0 EV Charging Systems	10	CO4	15	5	6	4
Unit- 5.0 Regulatory Requirements and Policies for EV Industry	6	CO5	9	3	3	3
Total Marks	48		70	20	27	23

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA				
S.	Laboratory Practical Titles	COs	Performance		Viva-		
No.	Editoratory Fractical Files	Number(s)	PRA* (%)	PDA** (%)	Voce (%)		
1	Practice using digital meters such as AC, DC Clamp Meters, DigitalMultimeters, Lux Meters, etc.						
2	Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter.	CO1	90	-	10		
3	Practice using safety kits.						
4	Identification of motors used in EV	CO2	60	30	10		
5	Testing of Batteries used in EVs	CO3	60	30	10		
6	Battery Management System						
7	Power electronic circuits	CO4	30	60	10		
8	Identification of Charging systems						

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Labs, and Field, Information and Communications Technology (ICT)Based, Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Tools and Software				
1.	AC, DC Clamp Meters	DC Clamp Meters Application: Non-contact AC/DC Voltage and Current measurement AC Application: Current: 0-200Amp, Voltage: 0-600Volt DC Application: Current: 4-20mA, Voltage: 0-30Volt.				
2.	Digital Multimeters	Display: 4 ½ digit Indications: overload protection, polarity indication, over range indication. Auto range change and auto polarity change facility, auto display of polarity and decimal point. DC: Volt: 200mV-600V, Current: 200mA-2A AC: Volt: 200mV-1000V, Current: 200mA-2A Resistance: 200W-20mW, Power supply: 230V, 50Hz Battery operation: 9 Volt battery Electronic components testing facility should be provided in the Multimeter. A provision for an A.C. adaptor(eliminator) must be available along with the multimeter.	1, 3			
3.	Lux Meters	Functions: MAX / MIN, Backlight, Auto Power Off Range: 0 ~ 200,000 lux 0 ~ 20,000 fc Accuracy: ± 5% rdg + 10 dgt (< 10.000 lux / fc) ± 10% rdg + 10 dgt (>10.000 lux / fc) Resolution: 0.1 lux or 0.1 fc Accessories: Carrying Case, Installation Manual, 9V Battery (installed).	1			
4.	Screw Driver toolbox	All types of screw drive sets.	1			
5.	Vernier Caliper	Range: Lower scale: 0-200mm, Upper Scale: 0-12inch Vernier Resolution: Lower Scale: 0.02mm, Upper Scale: 0.001inch	1			
6.	Micrometer	0-25mm (inside/outside)	1			
7.	Ampere Meter	Moving iron and Moving Coil	1			
8.	Voltmeter	AC(0-250V)/DC(0-24V)	1			
9.	Tachometer	For speed measurement (0-3000rpm)	1			
10.	Resistors	Low-value Resistors of different types	1,4			
11.	Capacitors	Low-value electrolyte Capacitors.	1,4			

S. No. Name of Equipment, Tools and Software		Broad Specifications	Relevant Experiment/Practical Number		
12.	Inductors	Low-value inductors.	1,4		
13.	Safety Kit	fety Kit First Aid Kit, Helmet, Face Mask, Gloves etc.			
14.	Motors for Electric Vehicleapplication	Brushless DC, Induction, Permanent Magnet Synchronous Motors, Switched Reluctance Motors	2		
15.	EV Machine Cut-out section	for demonstration & training	2		
16.	EV mock layout	for demonstration & training	2		
17.	Lithium Ion Battery	12V, 7Ah	3		
18.	Lead-acid battery	12V, 7Ah	3		
19.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah	3		
20.	Battery internal resistance meter	For O.C. voltage & internal battery resistance of each cell	3		
21.	Cell Capacity tester	Up to 15V batteries and 3A load current, 10mV voltage and 1mA current resolution, Automatic detection of termination voltage, LED display with a 3-button interface.	3		
22.	BMS setup	For Demonstration & training	3		
23.	DC power supply	0-32V	3		
24.	Power diodes	Power diodes of different current values.	1, 4		
25.	Transistors	Power Transistors (NPN, PNP) for Low-frequency high- power applications.	1,4		
26.	Voltage Sensors	0-12 Volts.	1,3,4		
27.	Current Sensors	Volts: + 15v, 0-5v, Current: 4-20mA.	1,3,4		
28.	Converter Models	DC to DC and DA to AC converter model	4		
29.	Charging Station Simulator	For Demonstration & training purposes.	4		
30.	EV Technology layout 3D posterwith frame	Fuel cell, EV- Charging Systems, HEV, FCEV, Motors & Controllers etc.	3,4		

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Handbook on Electric Vehicles Manufacturing (E-Car, Electric Bicycle, E- Scooter, E-Motorcycle, Electric Rickshaw, E- Bus, Electric Truck with Assembly Process, Machinery Equipment's &Layout)	P.K. Tripathi	Niir Project Consultancy Services; 1st edition (1 January 2022) ISBN-13: 978-8195676927
2.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
3.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13: 978-9811683473
4.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
5.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
6.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145

Semester- V

(b) Online Educational Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cell-systems
- 2. https://powermin.gov.in/en/content/electric-vehicle
- 3. https://www.iea.org/reports/electric-vehicles
- 4. https://www.oercommons.org/search?f.search=Electric+Vehicles

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504H (T2400504H/P2400504H/S2400504H)

B) Course Title : Robotics (Basic)

C) Pre- requisite Course(s)
D) Rationale

Currently, industries demand non-stop and fine quality work in different processes used. It is difficult for the human beings to give same quantity and quality of work with respect to time, environment and complexity of the work in any process industry. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators who will operate these robots need some basic knowledge of robotics. To fulfill the need of industries and looking to the advancement in technology, this course aims for the diploma engineers to have knowledge and skills in robotics.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select robots for given applications employing basic concepts of design and functions of robots.
- **CO-2** Interpret co-ordinate systems and degree of freedom for robots.
- **CO-3** Use sensors and drives in context of various robotic applications.
- **CO-4** Select appropriate robot control techniques,
- **CO-5** Use programs to operate robots.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life		
	Discipline	Analysis	Development of	Tools	Practices for	Management	Long		
	Specific		Solutions		Society,		Learning		
	Knowledge				Sustainability				
					and				
					Environment				
CO-1	3	-	3	-	2	2	2		
CO-2	3	2	1	2	-	-	-		
CO-3	3	2	1	2	2	-	2		
CO-4	3	1	1	2	-	-	-		
CO-5	3	2	3	3	2	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Instruction		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т						
2400504H	Robotics (Basic)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	Scheme (Ma	rks)			
se Code	Course Tible	Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
2400504Н	Robotics (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504H

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number (s)
TSO 1a.	Explain the basic terms used in robotics	Unit	-1.0 Basics of Robotics Systems	CO1, CO2
	Identify components used in robots.		•	,
	Explain various types of movements.	1.1	Definition, need, brief history of	
	Distinguish various robots' configurations and their workspace.		robotics Basic Robot terminology, configuration and its working	
TSO 1e.	Evaluate the degrees of freedom of the given robot.	1.3	Robot components overview - Manipulator, End effecters, Drive system, Controller, Sensors	
TSO 1f.	Specify the methods of conversion of the given linear motion into rotary motion and vice-versa.	1.4	Basic structure of a Robot and Classification – Cartesian, Cylindrical, Spherical, Horizontal articulated (SCARA),	
TSO 1g.	List the criteria for selecting robot for the given simple application with justification.		Parallel; Mechanic alarm, Degree of freedom, Links and joints, Wrist rotation, Mechanical transmission-pulleys, belts, gears, harmonic drive (gear box) Linear and Rotary motion and its devices Selection criteria for robots	
TSO 2a.	Explain the working of various types of		- 2.0 Robot Components	CO3
	End effecters used in robots with diagram. Explain with sketches the function of the	2.1	End effecters: types, sketches, working and applications	
	given sensing device used in a robot.	2.2	Sensing and Feedback devices:	
150 2c.	Describe working of the given sensor used in robot.		Optical sensors, Proximity sensors, LVDT, Thermocouple,	
TSO 2d.	Explain the given robot configuration.		RTD, Thermistor, Force sensing –	
	Select relevant robot sensors for a given		strain gauge, Piezoelectric,	
	application with justification.		Acoustic sensing Feedback	
TSO 2f.	Describe robot machine vision concepts		devices; Potentiometers; Optical	
	along with block diagram of robot vision system.	2.3	encoders; DC tachometers; Robot machine vision: Block diagram of	
TSO 2g.		2.5	robot vision system, Vision equipment-	
	robotic application.		camera, Imaging Components: Point,	
			Line, Planar and Volume Sensors, Image	
			processing, Part recognition and range	
TSO 3a	Explain with sketches the function of the	Unit	detection - 3.0 Robotic Drive System and Controller	CO4
130 34.	specified actuator used in a robot.	0	3.5 Robotic Brive System and controller	204
TSO 3b.	Differentiate between open loop	3.1	Actuators; Hydraulic, Pneumatic and	
T	and closed loop systems.		Electrical drives; linear actuator; Rotary	
	Explain various robotic controls. Describe block diagrams of the	3.2	drives Control systems: Open loop and close	
130 30.	given control system.	٥.۷	loop with applications and its elements,	
TSO 3e.	Specify drive system used for		Servo and non-servo control systems –	
	robotic control as per		Types, basic principles and block diagram	
TSO 3f.	requirement. Differentiate the various robot path	3.3	Robot controller; Level of Controller AC servo motor; DC servo motors and	
TSO 30	controls. Justify the selection of actuators,	3.4	Stepper motors; Robot path control: Point to point,	
130 3g.	drives, control system, AC servo motor and path control for making of a robot.	J. 4	Continuous path control and Sensor based path control	
TSO 4a.	Explain various robot programming	Unit	- 4.0 Introduction to Robot Programming	CO5
	languages. Programme robot for a given simple job.	4.1 4.2	Need and functions of programming Methods of robot programming: Manual	
			Teaching, Teach Pendant, Lead through,	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 4c. Describe the procedure to simulate the given robot movements using the relevant software.	Programming languages. Programming with graphics. 4.3 Programming languages: Types, features and applications 4.4 Controller programming 4.5 Simulation for robot movement	
TSO 5a. Select a robot for the given application.	Unit- 5.0 Robotics Applications and	CO1, CO2,
TSO 5b. Describe various applications of Robotics. TSO 5c. Explain safety norms in robot handling. TSO 5d. Describe maintenance procedure for the given robot. TSO 5e. Describe common problems in robot operations and suggest remedial action.	Maintenance aspects 5.1 Application robots including special types 5.2 Robot maintenance: Need and types 5.3 Common troubles and remedies in robot operation. 5.4 General safety norms, aspects	CO3, CO4
	and precautions in robot handling	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504H

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Identify parts of Robot on the basis of function. LSO 1.2 Identify joint type & link parameters (link length, link twist, and Link offset), rotational vs. linear motion, used in robot.	1.	Identify components and different configurations of robots.	CO1
LSO 2.1Identify different types of robot end effecters. LSO 2.2 Use Mechanical grippers to hold objects. LSO 2.3 Use Vacuum grippers to hold objects.	2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2
LSOs 3.1 Assemble the complete robot using the components as per the procedure LSO 3.2 Apply the functionalities available in rotor trainer kit. LSO 3.3 Test for various configurations. LSO 3.4 Test for various degrees of freedom.	3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2
LSO 4.1 Identify various types of sensors used in robotic application. LSO 4.2 Measure angular motion using Synchros. LSO 4.3 Detect objects using optical sensors.	4.	Use different types of robotic sensors for a specific situation.	CO3
LSO 5.1 Interface stepper motor. LSO 5.2 Control robot with stepper motor interfacing.	5.	Perform robot control with stepper motor interfacing	CO3
LSO 6.1 Draw the labelled sketch of individual parts and robot arm. LSO 6.2 Assemble the arm using the parts as per the procedure. LSO 6.3 Interface the motor drive and operate.	6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3
LSO 7.1 Use open source or available relevant software to develop pick and place programme. LSO 7.2 Perform simulation.	7.	Perform pick and place operation using Simulation Control Software.	CO5
LSO 8.1 Develop programme for using a robot arm with three degrees of freedom.	8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 8.2 Execute the programme.			
LSO 9.1 Apply stepper motor control with direction control and step control logic simulation. LSO 9.2 Perform basic PLC programming LSO 9.3 Develop ladder logic programs LSO 9.4 Use programming timers	9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5
LSO 10.1Develop a program for a simple application. LSO 10.2 Execute the robot programme.	10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5

- L) Suggested Term Work and Self Learning: S2400504H Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - **b. Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.
 - 1. Develop stair climb robot using robotic components.
 - 2. Develop RF controller robot using robotic components.
 - 3. Develop robot for metal detection application using robotic components.
 - 4. Develop line follower robot using robotic components.
 - 5. Develop solar floor cleaner robot using robotic components.
 - 6. Develop solar tracker system using robotic components.
 - 7. Develop a greenhouse managing robot for a horticulture application.

c. Other Activities:

- 1. Seminar Topics: Recent developments in the field of robotics
- 2. Visits: Visit an automation industry and prepare report for various types of robots employed there and details of any one type of special purpose robot used
- 3. Case Study: Identify a robotic application in automobiles and present a case study
- 4. Self-Learning Topics:
 - History of industrial robot
 - Sociological consequences of Robots

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	nent (TWA)	Lab Assessment (LA)#						
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Work & Self Assessmer	U	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	25%	29%	20%	10%	25%	10%	20%			
CO-2	20 %	23%	20%	10%	25%	20%	20%			
CO-3	20%	17%	20%	25%	25%	20%	20%			
CO-4	20%	14%	20%	15%	25%	20%	20%			
CO-5	15%	17%	20% 40%		30%	20%				
Total	30	70	20 20 10			20	30			
Marks				50						

Legend:

* : Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)
: Mentioned under point-(O)

Note

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Number and Title	Total	Relevant	Total	al ETA (Marks)				
	Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)		
Unit-1.0 Basics of Robotics Systems	10	CO1, CO2	20	7	8	5		
Unit- 2.0 Robot Components	12	CO2, CO3	16	3	9	4		
Unit- 3.0 Robotic Drive System and Controller	10	CO3, CO4	12	4	4	4		
Unit- 4.0 Introduction to Robot Programming	8	CO5	10	2	5	3		
Unit – 5.0 Robotics Applications and Maintenance aspects	8	CO1, CO2, CO3, CO4	12	4	4	4		
Total Marks	48		70	20	30	20		

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant COs	PLA/ELA			
S.	Laboratory Practical Titles	Number	Perfo	Viva-		
No.	Ediboratory Fractical Fittes	(s)	PRA*	PDA**	Voce	
		(5)	(%)	(%)	(%)	
1.	Identify components and different configurations of robots.	CO1	30	60	10	
2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2	60	30	10	
3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2	70	20	10	
4.	Use different types of robotic sensors for a specific situation.	CO3	60	30	10	
5.	Perform robot control with stepper motor interfacing	CO3	70	20	10	
6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3	60	30	10	
7.	Perform pick and place operation using Simulation Control Software.	CO5	70	20	10	
8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5	60	30	10	
9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5	60	30	10	
10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5	60	30	10	

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment,	Broad Specifications	Relevant
	Tools and Software		Experiment/
			Practical Number
1.	Programmable Robot trainer	Trainer kit with - Minimum 3 linkages, Minimum 4	1,2,3
	kit	degree of freedom, Mechanical end effecter with	
		servo control, interfacing card (RC servo output,	
		sensors input)	
2.	Robotic Arm Control Trainer	Robotic Arm with five axis control application	8,9
	Kit	through PLC.; PLC; Digital Inputs: 8 Nos with 4mm	
		banana sockets for getting the external inputs; Digital	
		Outputs: 6 Nos with 4mm banana sockets for	
		applying the inputs; Digital Input Controls: On board	
		Toggle switches, Push Buttons & input	
		potentiometers; Digital Outputs Controls: 6 nos. on	

S. No. Name of Equipmen		Broad Specifications	Relevant
	Tools and Software		Experiment/
			Practical Number
		board LED indicators; PC interfacing facility through RS-232.	
3.	Proximity trainer kit	Indicator Type:LED; PCB Type Glass Epoxy SMOBC PCB; Interconnections: 2mm banana Patch cords; On board DC motor to see the application of Proximity sensor. Test points to analyse the signal On board variable supply to vary the speed of DC motor. ON/OFF switch and LED for power indication. All interconnections to be made using 2mm banana Patch cords. User manual and patch cords. Built-in power supply. Robust enclosure wooden/plastic box.	4
4.	Robot - Line Tracking Mouse K	Product Dimensions (20.3 x 11.4 x 8.9 cm); programmed IC, 2 unassembled gear motors, printed circuit boards, mouse-shaped plastic body, necessary components and wires, step-down power converter	3, 4,5
5.	Intelligent Robot Actuator Module	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70×10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high-strength aluminium, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to-digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	3, 4, 5
6.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front panel. Software to demonstrates functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PLC; Touch operated ON/OFF switch; Auto set to home position; Applications can be developed; Data acquisition using USB	3, 4, 5
7.	Robotic Drive System	AC servo motor; DC servo motors, Stepper motors; DC tachometers, etc.	1,3,5,6,7,10
8.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	8, 10
9.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc	4
10.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4,10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Introduction to Robotics Mechanics and Control	John Craig	Pearson Education; 978-9356062191
2.	Industrial Robotics -Technology, Programming and Applications	Nicholas Odrey Mitchell Weiss, Mikell Groover Roger Nagel, Ashish Dutta	McGraw Hill Education; 2nd Edition; 978 -1259006210
3.	Robotic engineering: an integrated approach	Richard D. Klafter, Thomas A. Thomas A. Chmielewski, Michael Negin	Prentice Hall of India, N.Delhi , 978-8120308428
4.	Industrial Robotics Technology, Programming and Applications	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey	McGraw-Hill Education, Second Edition, 978-1259006210
5.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281
6.	Introduction to Robotics: Analysis, Control, Applications	Saeed B. Niku	Wiley; Second Edition, 978-8126533121
7.	Essentials of Robotics Process Automation	S. Muhkerjee	Khanna Publication, First edition, 978-9386173751
8.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan 978-9388897020

Semester- V

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/112/105/112105249/
- 2. https://openlearning.mit.edu/mit-faculty/residential-digital-innovations/task-centered-learning-intro-eecs-robotics
- 3. http://www.mtabindia.com/
- 4. http://www.robotics.org/
- 5. https://en.wikipedia.org/wiki/Industrial_robot
- 6. http://www.servodatabase.com
- 7. https://www.youtube.com/watch?v=fH4VwTgfyrQ
- 8. https://www.youtube.com/watch?v=aW_BM_S0z4k
- 9. https://uk.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/robotic-parts-guide
- 10. https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensors-software-the-cloud
- 11. https://www.iqsdirectory.com/articles/machine-vision-system.html

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

1.Learning Packages

- https://www.edx.org/learn/robotics
- https://www.coursera.org/courses?query=robotics
- https://www.udemy.com/topic/robotics/
- https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.
 %20Robotic%20package%20for%20education.pdf

2.Users' Guide

 https://roboindia.com/store/DIY-do-it-your-self-educational-kits-robotics-embedded-systemelectronics

- https://www.robomart.com/diy-robotic-kits
- https://www.scientechworld.com/robotics

3.Lab Manuals

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf

A) Course Code : 2400505 (P2400505/S2400505)

B) Course Title : Entrepreneurship Development & Start-ups

(Common for all Programmes)

C) Pre-requisite Course(s)

D) Rationale :

A fast-growing economy provides ample opportunities for diploma engineers to succeed in entrepreneurship and start-ups. Start-up ecosystem and Entrepreneurship Development skills are fully developed providing many opportunities to the youths. Diploma engineers can be their own masters and provide jobs to others by starting their service-industry / assembly/marketing/consultancy/manufacturing enterprises. Entrepreneurship requires a distinct set of skills that will be developed in this course. This course aims at developing competencies in the diploma engineer for becoming an intrapreneur, a successful entrepreneur, or a startup Co-Founder. After successfully completing this course students who develop the qualities of a successful entrepreneur can establish their own manufacturing industry/business startup or be self-employed. Those who prefer jobs can become intrapreneurs and share profits with their company.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor, and Affective) in the classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Demonstrate traits of a successful intrapreneur/ entrepreneur/ start-up co-founder.
- **CO-2** Innovate products and services using creativity and innovation techniques.
- **CO-3** Manage critical resources from support institutions.
- **CO-4** Prepare sustainable small business plans.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long		
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning		
	Specific		of Solutions		Sustainability and				
	Knowledge				Environment				
CO-1	3	-	-	-	2	3	2		
CO-2	3	2	3	-	2	3	2		
CO-3	3	3	3	1	2	3	2		
CO-4	3	3	-	-	2	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400505	Entrepreneurship Development & Startups	-	ı	04	02	06	03		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
		Theory Ass	sessment	Term Work & Self-Learning		Lab Assessment		7
		(TA	A)			(L	A)	+L/
ode				Assessment (TWA)				(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2400505	Entrepreneurship Development & Startups	-	-	20	30	20	30	100

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: (Not Applicable)

K) Suggested Laboratory (Practical) Session Outcomes (LSOs)and List of Practical: P2400505

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)
LSO1.1	Identify the skills of a Successful Entrepreneur.	1.	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1
LSO1.2	Determine the charms of entrepreneurship and start-ups	2.	Discussion session with your institute's pass-out students who are successful entrepreneurs.	CO1
LSO1.3	Perform strength, weakness, opportunity, and threat analysis.	3.	SWOT analysis to arrive at your business idea of a product/service.	CO1
LSO1.4	Develop sales & marketing skills	4.	Sale of products to different customers	CO1
LSO2.1	Use creativity and put up a stall in a funfair and write a report of profit/loss.	5.	Creativity and Innovation in Business	CO2
LSO2.2	Innovate a point of sale for a product.	6.	Exhibition cum sale of products prepared out of waste.	CO2
LSO2.3	Generate different business opportunities.	7.	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2
LSO1.5	Discover entrepreneurial potential.	8.	Self–assessment test to discover entrepreneurial traits.	CO1
LSO2.4	Classify domain-specific industries on business parameters.	9.	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2
LSO3.1	Identify entrepreneurship support institutions beneficial for the enterprise.	10.	Compile the information from the government agencies that will help you set up your business enterprise.	CO3
LSO3.2	Select a suitable funding scheme for the enterprise.	11.	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3
LSO3.3	Analyze the assessment procedure of bank loans.	12.	Collect loan application forms of nationalized banks / other financial institutions.	CO3
LSO3.4	Compute the financial needs of the business enterprise	13.	Compile the information from financial agencies that will help you set up your business enterprise.	CO3
LSO2.5	Select a business opportunity.	14.	Identify the business opportunity suitable for you.	CO2
LSO3.5	Carry-out market survey for a product.	15.	Market Survey for an Enterprise	CO3
LSO4.1	Find out rates of industrial lands and buildings in different industrial areas.	16.	Industrial land and building for Entrepreneurship.	CO4
LSO4.2	Craft a vision statement and enabling mission statements for your chosen enterprise.	17.	Vision statement and mission statement for a Startup.	CO4
LSO4.3	Select a suitable name and brand for the business enterprise.	18.	Branding for a product and a Company.	CO4
LSO4.4	Design a logo, letterhead, and visiting card for the business.	19.	Marketing communication for business.	CO4

Practical	Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)
LSO4.5	Prepare a techno-feasibility report	20.	A techno-feasibility report of a chosen product/service.	CO4
LSO4.6	Prepare a business plan for the enterprise.	21.	Business plan for the enterprise.	CO4
LSO4.7	Develop a website for the business	22.	Online Marketing for Business.	CO4
LSO3.6	Prepare a set of short-term, medium, and long-term goals for starting a chosen small-scale enterprise.	23.	Goal setting for an enterprise.	CO3
LSO3.7	Prepare an advertising campaign for your chosen product/service.	24.	Marketing management for an enterprise.	CO3
LSO3.8	Establish a supply chain network for the enterprise.	25.	Supply Chain Management	CO3
LSO3.9	Establish a Market intelligence mechanism.	26.	Market Intelligence for Entrepreneurship	CO3
LSO4.8	Compile information about various insurance schemes covering different risk factors.	27.	Risks in business	CO4
LSO4.9	Calculate the breakeven point for the business idea chosen by you.	28.	Breakeven point for a business	CO4

- **L)** Suggested Term Work and Self-Learning: S2400505 Some sample suggested assignments, micro-projects, and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher inline with the targeted COs.
 - i. Prepare a list of successful Entrepreneurs in the city.
 - ii. Prepare a list of startups in the city.
 - iii. Prepare a list of the nearest incubators.
 - iv. Prepare a list of Angel Investors and Venture Capitalists.
 - i. Choose any product and study its supply chain.
 - ii. Arrange brainstorming sessions for improvement of any product.
 - iii. Choose any advertisement and analyse its good and bad points.
 - iv. Visit industrial exhibitions, trade fairs and observe nitty-gritty of business.
 - v. Study schemes for entrepreneurship promotion of any bank.

b. Micro Projects:

- i. Interview successful entrepreneurs and startup co-founders in the city and innovate their products/services, pricing, packaging, advertisements, propositions, etc.
- ii. Identify different entrepreneurship support institutions in the city.
- iii. Prepare a collage for specific entrepreneurship development institutions.
- iv. Conduct a market survey for a specific product idea.

c. Other Activities:

1. Seminar Topics:

- Charms of entrepreneurship.
- Challenges of entrepreneurship.
- Startup ecosystem in India.
- One district one product scheme
- Setting up of a business.

- Market study of specified business.
- Prepare a business plan for your chosen small scale enterprise.
- Business opportunity suitable for you.

2. Visits:

- Visit DIC, MSME, NSIC, NABARD, KVIC, IDBI, SBI, State Consultancy Organization, Industrial Development Center, Trade Exhibitions, Export Fairs, Trade Shows, etc.
- Visit nearby tool room/industry and learn to prepare budget of that industry. Also learn to grow low scale business and marketing. Prepare list of advertisement to grow business.

3. Self-Learning Topics:

- Achievement Motivation.
- Need for achievement.
- Calculated risk.
- CSR (Corporate Social Responsibility)
- MSME Development Institute.
- Marketing their business.
- Growing their business.
- Financial management.
- Dealing with the pressure and stress
- **M)**Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term Wo	ork Assessm	nent (TWA)	Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Work & Self Assessmer	Ū	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	-	-	30%	-	-	30%	25%	
CO-2	-	-	10%	25%	-	10%	25%	
CO-3	-	-	30%	25%	50%	30%	25%	
CO-4	-	-	30%	50%	50%	30%	25%	
Total	-	-	20 20 10			20	30	
Marks			1	50		1		

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(0)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: (NOT APPLICABLE)

O) Suggested Assessment Table for Laboratory (Practical):

s.		Atl		PLA/ELA		
Э.	Laboratory Dractical Titles	Number	Perfori	mance	Viva-	
	Laboratory Practical Titles	(s)	PRA*	PDA**	Voce	
No.			(%)	(%)	(%)	
	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1	50	40	10	
	Discussion session with your institute's pass-out students who are successful entrepreneurs.	CO1	50	40	10	
3.	SWOT analysis to arrive at your business idea of a product/service.	CO1	50	40	10	
4.	Sale of products to different customers	CO1	50	40	10	
5. (Creativity and Innovation in Business	CO2	50	40	10	
6. E	Exhibition cum sale of products prepared out of waste.	CO2	50	40	10	
	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2	50	40	10	
8.	Self–assessment test to discover entrepreneurial traits.	CO1	50	40	10	
S	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2	50	40	10	
	Compile the information from the government agencies that will help you set up your business enterprise.	CO3	50	40	10	
	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3	50	40	10	
	Collect loan application forms of nationalized banks / other financial institutions.	CO3	50	40	10	
	Compile the information from financial agencies that will help you set up your business enterprise.	CO3	50	40	10	
14.	Identify the business opportunity suitable for you.	CO2	50	40	10	
15.	Market Survey for an Enterprise	CO3	50	40	10	
16. I	Industrial land and building for Entrepreneurship.	CO4	50	40	10	
17.	Vision statement and mission statement for a Startup.	CO4	50	40	10	
18. E	Branding for a product and a Company.	CO4	50	40	10	
19.	Marketing communication for business.	CO4	50	40	10	
20.	A techno-feasibility report of a chosen product/service.	CO4	50	40	10	
21.	Business plan for the enterprise.	CO4	50	40	10	
22. (Online Marketing for Business.	CO4	50	40	10	
23.	Goal setting for an enterprise.	CO3	50	40	10	

		Relevant Cos	P	LA/ELA	
S.	Laboratory Practical Titles	Number	Perforr	nance	Viva-
No.	Laboratory Fractical Titles	(s)	PRA* (%)	PDA** (%)	Voce (%)
24.	Marketing management for an enterprise.	CO3	50	40	10
25.	Supply Chain Management	CO3	50	40	10
26.	Market Intelligence for Entrepreneurship	CO3	50	40	10
27.	Risks in business	CO4	50	40	10
28.	Breakeven point for a business	CO4	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.
- Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Entrepreneurial Development	Khanka S.S. (2006)	S. Chand Publishing, 20068121918014,
2.	Un-Boxing Entrepreneurship Your self-help guide to setup a successful business	Dr. Nishith Dubey Aditya Vyas, AnnuSoman, AnupamSingh, CharulChaturvedi, Praveen Shukla	Indra Publishing House, 2023, ISBN- 978-93-93577-70-2
3.	Skill Development and Entrepreneurship in India	Rameshwari Pandya	Ingram 2016, 8177084186
4.	Production and Operations Management	SV Deshmukh, A K Chitale and Nishith Rajaram Dubey,	Archers & Elevators Publishing House, Bangalore ISBN 9789386501197
5.	Entrepreneurship Development	Sapna Jarial	New India Publishing Agency- Nipa 2022, 9395319240
6.	The Entrepreneurial Instinct: How Everyone Has the Innate Ability to Start a Successful Small Business	Monica Mehta	Tata McGraw Hill Education, New Delhi, 2012, ISBN 978-0-07-179742-9
7.	The Learn Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses	Eric Ries	Penguin UK ISBN-978- 0670921607

S. No.	Titles	Author(s)	Publisher and Edition with ISBN		
8.	Entrepreneurship and Start-ups	Ekta Sharma	FPH		
9.	The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business	Clayton M. Christensen	Harvard business ISBN: 978- 142219602		

(b) Online Educational Resources:

- 1. Coir Board http://coirboard.gov.in/
- 2. National Institute for Micro, Small and Medium Enterprises (ni-msme) https://www.nimsme.org/
- 3. MSME / Udyam Registration https://udyamregistration.gov.in/Government-India/Ministry-MSME-registration.htm
- 4. CHAMPIONS https://champions.gov.in/Government-India/Ministry-MSME-Portal-handholding/msme-problem-complaint-welcome.htm
- 5. Prime Minister Employment Generation Programme and Other Credit Support Schemes https://msme.gov.in/prime-minister-employment-generation-programme-and-other-credit-support-schemes
- 6. Marketing Promotion Schemes https://msme.gov.in/marketing-promotion-schemes
- 7. Start-up India https://www.startupindia.gov.in/
- 8. DPIIT Recognition https://www.startupindia.gov.in/content/sih/en/startup-scheme.html
- 9. Startup India Seed Fund Scheme https://seedfund.startupindia.gov.in/
- 10. STARTUP INDIA INVESTOR CONNECT https://investorconnect.startupindia.gov.in/
- 11. Startup Funding https://www.startupindia.gov.in/content/sih/en/funding.html
- 12. Women Entrepreneurship in India https://www.startupindia.gov.in/content/sih/en/women_entrepreneurs.html
- 13. Incubators https://www.startupindia.gov.in/content/sih/en/incubator-framework.html
- 14. Start-up Mentors https://www.startupindia.gov.in/content/sih/en/search.html?roles=Mentor&page=0
- 15. NEN https://nen.org/
- 16. TIE https://tie.org/
- 17. MoE Innovation Cell https://www.mic.gov.in/
- 18. https://youtu.be/8iKsZZYv90k
- 19. https://youtu.be/Tzzfd6168jk
- 20. https://youtu.be/9-O15gDqebg

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others: -

A) Course Code : 2428506 (P2428506/S2428506)

B) Course Title : Summer Internship -II / Industrial training

C) Pre- requisite Course(s) :
D) Rationale :

With the advancement in technology and skill requirements of industry 4.0, we need to prepare our young Indian technical talent to meet the present demand. Our diploma pass outs are either supposed to work as supervisor in the industries or start their own enterprise, hence upon the completion of diploma programme, they need to be adequately equipped with knowledge, skills and attitude required by the world of work in their relevant field. To attain this, students need to be sent for internship, industrial visit and industrial training during the course of study. One or two mandatory internships are placed in the programme structure to equip the students with practical knowledge, problem solving attitude and also provide the exposure to real time industrial environments. It also helps the students to understand the industrial requirements, develop expertise through hands on experience and take up project work relevant to industry. With these provisions of industrial exposures relevant practical and professional skills are developed in the students and as a result they are readily employed and widely accepted by industries, even sometimes during such trainings itself. In the context of above after having gone through the summer internship-I (after the second semester), the summer internship-II/ industrial training is planned after the completion of fourth semester.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Develop the comprehensive view of industry 4.0 elements and 21st century skills requirements in the relevant diploma engineering programme through Summer Internship-II.
- **CO-2** Outline the importance of industrial training and Internship for gaining direct practical skills on their relevant domain area of industrial equipment, automation, machinery, processes, product, management, operations, software development etc.
- **CO-3** Use the knowledge and skills gained during industrial training or world of work.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes(POs)									
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	2	-	-	3	-	2	1				
CO-2	-	-	-	3	-	2	1				
CO-3	3	2	2	3	-	2	1				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course Title	Scheme of Study (Hours/Week)								
Code		Instru	room action (1)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	T							
2428506	Summer Internship - II	-	-	02	04	06	03			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	heme (Mar	ks)			
	Course Tible	Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2428506	Summer Internship - II	-	-	20	30	20	30	100	

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Guidelines to Teachers for Implementation & Assessment of Industrial internship/training:

1. Rationale:

During implementation of the curriculum, industrial exposure in the form of industrial internship/training is very important for developing and reinforcing many concepts and principles and also to get exposure of industrial environment, working culture, latest developments in relevant field, layout, management, culture, hierarchy, discipline, safety norms, different department/sections, quality control/assurance in processes, services and products, demonstration and operation of specific equipment/machinery, rules and procedures and many other aspects of the industries, where diploma holders are going to work. Students also get exposed to the different kinds of problems which can be brought into the institutional laboratories or workshop. Organizing industrial training of students is essentially required to enhance the prospects of employability, after undergoing industrial training, students get the direct exposure to the world of work in their relevant field. They get hands on experience in the industries.

Planning before Industrial internship/training is essentially required to be done for effective implementation of the same.

2. Planning for industrial internship/training:

Following points need to be planned and briefed by the teachers to the students before proceeding for industrial training. Student should take into consideration these points and carry the relevant format/data/log book with them.

- Analyze curriculum analysis and identify curricular gaps and topics which need industrial intervention;
- Objectives /Purposes of the industrial internship/training
- Outcomes targeted before proceeding to industrial internship/training.
- Pre-requisite knowledge or skills required to be developed in the students in the form of demonstration or classroom sessions.
- Identification and planning for demonstration of any equipment or experiments, concepts, under the content beyond syllabus.
- Preparation of database of nearby relevant industries.
- Good rapport needs to be developed and maintained with the industries by the teachers, so that the students are ultimately benefitted by the industrial internship/training.
- Industrial policy of the state also needs to be taken care of while planning of industrial training
- For assessing the students on various dimensions of industrial internship/training, assessment rubric may be prepared by the implementing teachers in advance.
- Make arrangements for student insurance during the industry internship/training
- Prepare instructions to be followed by students in the industries.
- Following formats need to be developed by the teachers and briefed to the students before proceeding to industrial internship/training –
 - Formats of observations on layout, ambience, and work culture to be developed, and briefed to the students.
 - Formats of outcome attainment, related to observation on relevant technical area also need to be developed by the teachers and briefed to the students.
 - Formats and contents of report writing and presentation.
 - Formats and contents on assessment of industrial training.
 - Continuous observation formats on many points such as behavioral aspects related to soft skills development such as initiativeness, observation, notes taking skills, inquisitiveness, obedience, sincerity, follow the instructions, positive attitude and many other aspects.

Formats of Assessment Rubric on different parameters of both behavioral aspects and technical aspects of the programme.

3. Major outcomes expected to be attained and assessed:

Outcomes expected from the industrial internship/training should be clearly defined and briefed to the students. Evaluation criteria for assessing students, need to be prepared for different outcomes set, during the planning stage. The list of major outcomes expected to be attained are —

- Development and reinforcement of Basic knowledge
- Development and reinforcement of Engineering knowledge through reinforcement of concepts or principles.
- Gaining Engineering Knowledge i.e operations, performance, maintenance, demonstrations of specific skills relevant to the content of the programme.
- Experiment and practice Development of experimental practical skills and technical skills relevant to the course programme.
- Development of learning to learn skills and lifelong teaching skills for latest advancement in technology.
- Outcome attainment through content beyond syllabus
- Development of positive attitude, professional ethics and etiquettes.
- Development of skills for individual and team work during performance and otherwise.
- Maintaining Business Secrecy
- Development of Communication Skills
- · Ability to follow the instructions
- Ability to follow the safety precautions
- Ability to supervise the task
- Ability to coordinate with subordinates and higher ups
- Development of Interpersonal skills
- Environmental Consciousness and Sustainability
- Development of Observational Skills
- Development of Self-discipline and Integrity
- Development of Time Management habits
- Development of generic skills such as pro-activeness, commitment
- Development of Problem-Solving abilities
- Achievement of target
- Concern for Environment, Sustainability Society
- Communication ability
- Industrial System and its development
- Safety Awareness
- Systematic Operations and Productions
- Quality control
- Management of work place and work force
- Development of positive attitude
- Work culture/Quality Culture
- Development of Professional Ethics
- Industrial Management
- Systematic planning, Implementation & Evaluation
- Use of engineering tools, techniques, software's and Procedures
- Development of Lifelong learning skills

It is important to note that outcomes attained during industrial visit are at the awareness level only.

4. Actions to be taken by the Students and Teachers:

Students are sent to Industrial training after briefing on various aspects. During industrial training, observational skills in students are required to a great extent -

- Students need to be alert, meticulous and record the data, as briefed to them before the industrial training.
- Record of observations on safety precaution to be followed, any special point during performance and handling of equipment, performance on technical aspects and other related aspects need to be taken care of.
- Continuous observation, monitoring and assessment on various behavioral and performance of technical aspects of each student need to be critically observed and recorded by the teachers using different assessment tools.

5. Post Training Assessment:

The students need to be assessed on report writing, presentation and interpretation of data recorded, on various dimensions, planned and performed, after the industrial training. The actions are required to be taken for assessment during report writing, analysis, interpretation, presentation of data and its assessment.

J) Initiatives by Govt. of India and other Agencies for Industrial Internship/ Training/Visit for Skills Development:

1. Initiatives by Govt. of India, GOI

a. Initiatives by Ministry of Skills Development and Entrepreneurship: Many efforts are initiated by different agencies in this direction as per our Prime Minister's Skills Development Mission. Make in India, Skills India etc are such initiatives taken by ministry for the benefit of the students. The Ministry is responsible for co-ordination of all Skill Development efforts across the country, removal of disconnect between demand and supply of skilled manpower, building the vocational and technical training framework, skill up-gradation, building of new skills and innovative thinking not only for existing jobs but also jobs that are to be created. The Ministry aims to skill on a large scale with speed and high standards in order to achieve its vision of a 'Skilled India'.

b. Initiatives by Ministry of Education, Govt. of India

- i. Ministry of Education, Government of India is providing students a platform to inculcate a culture of product innovation and a mindset of problem solving to solve some of pressing problems solving to solve some of pressing problems we face in our daily lives through Smart India Hackathon (SIH) 2019.
 SIH 2023 brings the next generation evolution by inclusion of new methodology to inculcate the culture of startup and innovation ecosystem across different age groups i.e. are as follows: -
 - SIH Junior (Jr) School students from 6th to 12th class will be able to showcase their talent and generate out-of-the-box open innovation ideas.
 - SIH Senior (Sr) Regular Students of HEI's pursuing "Graduate/Post-Graduate/Ph.D." will be able to showcase their talent and generate out-of-the-box open innovation ideas
- ii. Internshala: Internshala is India's largest internship and training platform where more than 80,000 companies look for interns in various profiles (Engineering, management, media, arts etc.) AICTE has also partnered with Internshala for providing internship opportunities to every student in AICTE approved colleges. This facility is created to provide a platform for hands on experience to our future technicians on the relevant industries. With this experience, they are updated with the latest advances in their field of work.

SBTE, Bihar

Government of India through, AICTE is engaged in promoting the concept of industrial training through its various scheme, such as Internshala. The teachers now have the responsibility to understand in depth and implement such schemes in the institution for the benefit of students. At institute level also, there is need to develop policy for sending the students for industrial training.

c. Initiatives by All India Council for Technical Education (AICTE)

All India Council for Technical Education (AICTE) has been actively promoting various schemes to enhance internship, industrial training, and industrial visit opportunities for students pursuing technical education. These schemes aim to provide practical exposure, industry-relevant skills, and hands-on experience to students enrolled in AICTE-approved institutions. Since the schemes are reviewed continuously, the latest update can be referred through AICTE website.

- i. AICTE Training and Learning (ATAL) Academy: The ATAL Academy provides opportunities for faculty and students to participate in various skill development programs, including internships and industrial training, to enhance their technical knowledge and expertise.
- **ii. AICTE Doctoral Fellowship Scheme**: This scheme offers financial support to full-time Ph.D. scholars to undertake internships, research visits, or collaborative work with industry and research organizations in India and abroad.
- iii. Margdarshan Scheme: The Margdarshan Scheme encourages faculty members to interact with industries and update their technical knowledge, which, in turn, benefits the students through better industry exposure and guidance. The National Education Policy (NEP) 2020 has also stressed on accreditation and it forms one of the four pillars for benchmarking and ensuring quality. The creation of National Accreditation Council as envisaged under NEP is thus only a matter of time after the suitable legislation is enacted. As per the NEP, accreditation shall be the sole driver for all future educational restructuring and changes. Hence it has become much more essential for an institute to strive and obtain accreditation for their programmes. This Margdarshan Initiative was last revised in May 2022. While the scheme has progressed, a need was felt to undertake a review and amplify the guidelines based on the feedback from the environment and other developments.
- iv. AICTE Training and Learning (ATAL) FDP Internship: Under this scheme, faculty members have the opportunity to undergo internships at reputed industries to gain practical insights and update their teaching methodologies.
- v. AICTE Internship Policy: AICTE has laid down an Internship Policy to encourage students to undertake internships as part of their academic curriculum. This policy aims to enhance their employability and bridge the gap between industry and academia.
- vi. AICTE-MODROBS (Modernization and Removal of Obsolescence) Scheme: The MODROBS scheme supports the modernization of laboratories and workshops in technical institutions to enhance students' hands-on training experience. The scheme aims to modernize and remove obsolescence in the Laboratories / Workshops / Computing facilities (Libraries are excluded), so as to enhance the functional efficiency of Technical Institutions for Teaching, Training and Research purposes. It also supports new innovations in Class Room and Laboratory / Teaching Technology, development of Lab Instructional Material and appropriate Technology to ensure that the practical work and project work to be carried out by students is contemporary and suited to the needs of the Industry.
- **vii. AICTE Vocational Education Programs**: AICTE supports vocational education programs that incorporate practical training, internships, and apprenticeships to make students industry-ready.
- **viii. Industrial Visits and Training by Institutions**: While not a specific AICTE scheme, AICTE-approved institutions often organize industrial visits and training programs as part of their curriculum to provide practical exposure to students.

d. Initiatives by Ministry of Labour and Employment, Govt. of India

Ministry of Labour and Employment, Government of India launched a National ICT based job portal known as National Career Service (NCS) portal to connect the opportunities with the aspirations of youth. This portal facilitates registration of job seekers, job providers, and skill providers. Career counsellors, etc. The portal provides job matching services in a highly transparent and user-friendly manner. These facilities along with career counselling content are delivered by the portal through multiple channels like career centres, mobile devices, CSCs, etc.

The portal provides information on over 3000 career options from 53 key industry sectors. Job seekers also have access to industry trends in a user-friendly way. The NCS portal links job-seekers, employers, counsellors and training providers all through Aadhaar-based authentication. Registration to NCS portal is online and free of charge. The salient feature of NCS portal includes the following:

- Career counselling and Guidance
- Enabling Skill Development
- Empowering Job Seekers to find the right job
- Enabling employers to pick the right talent
- Enhancing capabilities of students through training Information's related to Job Fairs/Placements

Employment Exchanges Mission Mode Project (EE - MMP)

The Employment Exchange Mission Mode project is one of the 31 Mission Mode Projects under National e-Governance Plan (Ne-GP). Budget of INR 148.70 crore has been approved for 12th Five Year Plan for this project in December, 2013. The aim of EE-MMP is to provide career options and facilitate informed choice to the job seekers by providing a national platform for interface between stakeholders for responsive, transparent and efficient career services in order to meet the skill needs of a dynamic economy. The objective of EE-MMP is to take up process

Re-engineering and convert NES (National Employment Service) into NCS (National Career Service).

National Career Service (NCS)

NCS is proposed to have variety of services like information about skill development courses, apprenticeship, internship, career counseling, etc. along with all employment related services. It is expected that the NCS would be accessible to all stakeholders, based on partnerships and would provide larger number of services supported by call centers/helpdesk and through network of new nodes like CSC (common service centers), etc.

The main stakeholders for the NCS would include:

- Unemployed candidates seeking jobs
- Students seeking career counseling
- Candidates seeking vocational / occupational guidance
- Illiterate, under-privileged sections of society, blue-collar workers seeking placements and guidance
- Person with different abilities (PWDs), ex-servicemen, veterans / senior citizens, etc.
- Employers seeking suitable candidates

e. Initiatives by Telecom Sector Skill Council (TSSC)

TSSC has taken a step towards fulfilling the emerging requirements of the industry by partnering with key stakeholders in order to bring the latest content to the forefront. TSSC have got into partnership with All India Council for Technical Education (AICTE) for summer internship programme and various other MNCs to impart Skilling in new emerging technologies. Some of the prime courses in new emerging technologies being offered by TSSC in addition to TSSC Qualification packs are as under:

Artificial Intelligence & Data Science

- Cyber Security
- Internet of Things
- Android
- AR/VR

In addition to this certain course on life skills/soft skills, employability related skills are also planned for the students such as

- Problem solving and analytic
- Communication skills
- Lifelong learning
- Behavioural Skills
- Professional Behavioural etc.

The main objectives of TSSC are as follows

- Bridge the gap and enhance employability of our students
- Training young minds towards 21st Century skills assisting industry cross-sector
- Meet the needs of school leavers and graduates, employers, government educational institutions and society.
- Address the need for quality, skill training for human resources to complement the large goal of accomplishing the include growth.
- Address the limited capacity of skills development facilities in India
- To develop extensive placement linkages with employers in all sectors to provide gainful entry-level employment opportunities to youth undergoing the skill training.
- Industry participation in developing the skill training solutions to address critical skill gaps by standardization of training content, delivery and assessment process o improve overall competitiveness of the industry.
- Set up a comprehensive pan- India Labour Market Information System (LMIS) i.e. preparing a webbased compendium of job roles and skill types to assist in planning for re-skilling, delivery of training and employability.
- Undertake occupational mapping and skill gap analysis i.e. identification of skill development needs based on LMIS and emerging technologies.
- Rationalize and maintain a skill inventory.
- Create a skill development plan in coordination with Electronic and IT sector skill councils.
- Review and identify emerging skill gaps by trend analysis.
- Develop National Occupational Standards (NOS) that feature skill competency standards and qualifications.
- Refine the existing curricula to align it with NOS, obtain approval from an industry led body of
 experts and facilitate building of delivery capacity.
- Plan and institutionalise an effective system for training of trainers.
- Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards. Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards.
- Create an assessment framework to award tamper proof certifications to trainees.
- Promote academies of excellence by nurturing state of vocational training.

Manage resources efficiently to achieve results and value for money.

2. Initiatives by other agencies

a. Initiatives by Engineering Council of India (ECI)

(ECI has also taken initiatives to organize series of interactive workshops to update and apprise the students about the products and services being offered by respective corporate house. This interaction will definitely bring the institute and industry closer and help in planning for effective implementation of industrial training.

b. Others

Many public sector and private organizations are also contributing to the course of quality improvement in technical education system by way of arranging industrial visit of providing industrial training to the students as a part of their corporate social responsibility and also for the growth of technical education system of the country.

- K) Assessment Rubric for Internship, Industrial Visit & Industrial Training: Assessment Rubric for Internship, Industrial visit and industrial training should be prepared based on the objectives set and type of industries where internship/visit or training has been planned. Specific criteria of performance/assessment before, during and after the internship, industrial visit and industrial training should be identified by the implementing teachers for designing the rubric. For objective, valid and reliable assessment of Industrial Training, Industrial Visit and Internship, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared by teachers. Even the students may be encouraged to adopt self-assessment techniques using the assessment rubrics.
- CO-PO, PSO Mapping: Based on the requirement of programme, objectives set and type of internship, industrial visit and industrial training placed at different semesters, CO-PO, PSO mapping need to be done. This mapping will vary at different semesters for same programme. Implementing teachers play very important role in developing the CO-PO, PSO matrix.

M) References:

- AICTE Internship Policy: Guidelines & Procedures (Nelson Mandela Marg, Vasant Kunj, New Delhi-110070)- https://aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf
- AICTE Internship Policy Guidelines & Procedures- https://www.aicteindia.org/sites/default/files/Aicte%20Internship%20Policy-%2002.04.2019.pdf
- AICTE Quality Initiatives In Technical Educationhttps://www.aicteindia.org/sites/default/files/AICTE%20QUALITY%20INITIATIVES%20IN%20TECHNICAL %20EDUCATION.pdf
- AICTE Internship Portal- https://internship.aicte-india.org/
- Industrial Visit- https://www.dsu.edu.in/commerce-management/scms-industrial-visit
- AICTE Idea (Idea Development)- https://idealnet.aicte-india.org/assets/data/scheme_doc.pdf
- AICTE Initiative- https://aicte-india.org/initiatives
- Draft Guidelines for Research Internship with Faculty and Researchers at Higher Education
 Institutions/Research Institutions- https://www.ugc.gov.in/pdfnews/1887287_Rsearch-Internship-Guidelines-120522.pdf

- AICTE internship 2022: Everything you need to know- https://ischoolconnect.com/blog/aicte-internship-everything-you-need-to-know/
- Industrial Visits Policy and Analysis- https://www.sggs.ac.in/home/page/Industrial-Visits-Policy-and-Analysis
- Field Visit and Industrial Visit Policy 2023 (Valid till May 2026)- https://www.bitsathy.ac.in/wp-content/uploads/Field-Visit-and-Industrial-Visit-Policy.pdf
- Industry Interaction Initiatives- https://sjbit.edu.in/industry-interaction-initiatives-ise/
- Internship Policy: Guidelines and Procedures 2021-22 Onwards- https://scetngp.com/wp-content/uploads/2023/04/Internships-Training.pdf
- Industrial Training Policy (Through Internship)https://vignaniit.edu.in/naac/criteria6/6.2.2%20Attachments/211229_Industrial%20Training%20policy. pdf
- UG Internship/Industrial Training/Project Work Guidelines (w.e.f. Academic Session 2020-21)https://nitkkr.ac.in/wp-content/uploads/2021/09/UG-Internship-Guidelines final-08042021.pdf
- Internship Policy- https://iar.ac.in/wp-content/uploads/2022/02/IAR-Internship-Policy.pdf
- Industry Institute Interaction Policy- http://www.gcekarad.ac.in/Placement/III_Policy_2021_Main.pdf
- Internship Policy August 2021- https://ksrct.ac.in/wp-content/uploads/2022/12/Internship-Policy.pdf
- Summer Internship Programme (Sip) Policy: Guidelines & Procedures- https://www.ipeindia.org/wp-content/uploads/2021/12/SIP-Guidelines-EDITED-21st-MAR-2021-Inline with- AICTE-Internship-Policy-2019-1.pdf
- Internship Policy: Guidelines and Procedures with Effect from Academic Year 2020-2021https://www.kitcoek.in/documents/academics/internship-policy/kit-internship-policy-2020.pdf
- Internship / Industrial Training- https://www.dkte.ac.in/placement/internship
- Ministry of Commerce and Industry (DPIIT Internship Scheme)https://www.myscheme.gov.in/schemes/dpiit-is

A) Course Code : 2428507 (P2428507/S2428507)

B) Course Title : Minor Project

C) Pre-requisite Course(s) :
D) Rationale :

Project work plays a very important role in engineering education in developing core technical skills, soft skills and a higher level of cognitive, psychomotor and affective domain skills. It encourages the critical thinking process in the students. Project work is normally done when students have acquired sufficient knowledge, skills and attitude and are able to integrate all these, entirely in a new situation or task to solve the problems of the industries/real world. Project work also develops many soft skills like confidence, communication skills, creative ability, inquisitiveness, learning to learn skills, lifelong learning skills, problem-solving skills, management skills, positive attitude, ethics etc.

In diploma programme of state of Bihar, minor project is being carried out at 5th semester where all aspects of project planning will be deal in detail.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Identify a real-world problem in the form of a project to be developed.
- **CO-2** Perform literature survey related to the identified area/problem.
- CO-3 Identify preliminary resource requirements (Equipment, Tools, Software, Manpower, Services)
- **CO-4** Prepare project synopsis for the identified problem/project title within stipulated time period.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	Designi	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO- 6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	2	-	-	-	-	1		
CO-2	3	2	-	-	-	2	1		
CO-3	3	2	-	2	-	2	1		
CO-4	3	-	-	-	-	3	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Cauras	Course		Scheme of Study (Hours/Week)								
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours	Total Hours	Total Credits (C)				
		L	Т		(TW+ SL)	(CI+LI+TW+SL)					
2428507	Minor Project	-	-	02	02	04	02				

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	Assessment So	cheme (Mar	ks)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2428507	Minor Project	-	-	10	15	10	15	50

Legend:

PTA: Progressive Theory Assessment in classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Implementation Plan of Minor Project:

Suggested implementation plan of minor project along with guidelines to teachers and students are mentioned below. For effective implementation of the project work in totality, different steps are to be carried out at different stages of the comprehensive project work.

1.	Project Planning. (Minor Project)	
2.	Design, development and execution of the project.	(Major Project)
3.	Quality of report writing and presentation.	

In this semester, under the minor project work, the students are guided and monitored to under take Project planning steps as mentioned below. While, the remaining steps of project implementation will be carried out during major project work in next the semester.

1.0 Guidelines to Students for Implementation of Minor Project.

Students are guided to undergo following steps under the minor project. Teachers are advised to guide the students on each and every step.

- 1.1 Identification of Area/Problem and Project Titles
- 1.2 Literature Survey
- 1.3 Identification of Outcomes of the Project
- 1.4 Identification of the recourses required.
- 1.5 Preparation of Synopsis
- 1.6 Presentation of Synopsis

1.1 Identification of Project Titles and Allocation Methodology:

Though the teachers and students, both are involved in identification of project titles, but the prime responsibility of identification of project titles goes to the respective teachers involved in implementing the course or programme. Teachers are fully aware of course/programme curriculum and they are also aware of related industrial problems hence, they try to explore the possibility of identification of project titles through these problems.

These small industrial problems in the form of project titles may be brought into the laboratories or workshop of institutions of a specific programme, which are equipped with all necessary facilities and resources to carry out the project work. These labs or workshop can function as miniature industry to solve the industrial problems in the form of simulated industrial projects. These projects may be integrated problem of courses or programme.

Criteria for Identification of Project Titles.

The identification of problem statement must be based on the following criteria:

- Environmental Considerations
- Simulated/Automated Industry's/ Improvised Process
- Application or Utility in the World of Work.
- Relevance to the Curriculum
- Mapping of Outcomes of Project with Pos and PSOs (if applicable)
- Feasibility of Implementation of the Project

1.2 Literature Survey:

Literature survey on the project title needs to be done through journals, websites, open-source technologies available, discussion with the practicing engineers/industry persons and other relevant sources available.

1.3 Outcomes of the Project:

The project guide should ensure that the project outcomes are written properly as clear, specific, measurable and attainable statements. The outcomes formulated will decide the overall scope or course of action, depth and breadth of the project and implementation plan.

1.4 Identification of the recourses required:

Students under the guidance of teacher should try to identify all the resources required for the completion of the project like equipment, devices, experimental test rig, software, computer, persons to be contacted, suppliers, funds, availability of internal/external lab. The sample size has to be delimited and decided as per the time limit allotted, feasibility and many other considerations.

1.5 Preparation of Synopsis:

The students at the end of the semester are expected to submit 'Project Synopsis' after interaction with guide, as per the guidelines and format provided.

1.6 Presentation of Synopsis:

After developing the synopsis, student(s) should prepare a Power Point Presentation and present the same in front of examiner, guide and audience. Quality of presentation of data need to be ensured using the following criteria through Rubric-

- Clarity in Communication and Presentation
- Voice Audibility
- Use of Media and Methods
- Satisfying the Queries of Audience
- Attainment of Outcomes

2.0 Guidelines to Teachers for Implementation of the Minor Project:

The teacher alongwith the students should identify the different types of project title(s) as per need of the client as mentioned below:

- Prototype Development
- Experimentation Type
- Software Development Type
- Solving Industrial Problem Type
- Market Survey Type
- Feasibility Study Type
- Simulation Based
- Application Type
- Product TypeResearch Type
- Review Type

The project must be feasible. The guide allocated for each project are responsible for the quality of student's work, on different criteria including the synopsis writing which can be monitored on continual basis.

The guide must ensure that the feasibility of the project, the availability of resources/ software technology, sufficiency of time, finance and requirements during each and every step or activity of project work in advance.

J) Assessment of the Minor Project:

Continual Monitoring and feedback mechanism should be developed by the guide. An assessment plan on weekly progress/updates, action taken on different criteria and sub-criteria of the project work is suggested below. Path-breaking teachers who think out of the box are required to guide, monitor and evaluate the project work.

For objective, valid and reliable assessment, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared. Even the students may be courage to adopt self-assessment techniques using the assessment rubrics.

The students need to be assessed continuously based on the below mentioned assessment criteria at project planning stage. The Project guide must prepare detailed rubric(s) for each criterion to have valid and reliable assessment.

Assessment Scheme for Minor Project

S. No.	Suggested Assessment Criteria	Suggested Weightage (%)
1.	Identification of Area/Problem Statement	10
2.	Literature Survey	20
3.	Formulation of Project Title	10
4.	Clarity in Formulation of Outcomes of The Project	10
5.	Preparation of Synopsis	30
6.	Presentation of Synopsis	20
	Total	100
