Curriculum of Diploma Programme

in

Mechanical Engineering

Department of Science,
Technology and Technical Education (DSTTE),
Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Diploma in Mechanical Engineering SBTE, Bihar

Semester – III Teaching & Learning Scheme

Course	Category	Course Titles				Teaching & Learnin		
Codes	of course			sroom tion(CI)	Lab Instruction	Notional Hours	Total Hours	Total Credits
			L	Т	(LI)	(TW+SL)	(CI+LI+TW+SL)	(C)
2425301	PCC	Manufacturing Engineering	03	-	04	02	09	06
2425302	PCC	Material Science & Engineering	02	01	-	02	05	04
2425303	PCC	Strength of Materials for Mechanical Engg. (ME, Me (Auto))	03	1	04	02	09	06
2425304	PCC	Basic Thermodynamics (ME, ME (Auto))	02	01	04	02	09	06
2425305	PCC	Computer Aided Drafting and Modeling (ME, ME (Auto))	-	-	04	02	06	03
2425306	PSI	Summer Internship – I (After 2 nd Sem) (Common for all programmes)	-	1	02	02	04	02
2400207	NRC	Indian Constitution (Common for All Programmes)	01	-	-	-	01	01
2400108	NRC	Essence of Indian Knowledge System and Tradition (Common for All Programmes)	01	-	-	-	01	01
2400110	NRC	Community/ Society Development (AIML, AE, CSE, ELX (R), CHE, EE, ME, ME (Auto), MIE, FTS, CACDDM, FPP)	01	-	-	-	01	01
		Total	13	2	18	12	45	30

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. todeliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, work shop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Diploma in Mechanical Engineering SBTE, Bihar

Semester - III Assessment Scheme

				Sillelle Sc		Assessment Sch	neme (Marks)		
			Theory Assessment (TA)		Term work &Self Learning Assessment (TWA)		Lab Assessment (LA)		Total Marks (TA+TWA+LA)
Course Codes	Category of course	Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	
2425301	PCC	Manufacturing Engineering	30	70	20	30	20	30	200
2425302	PCC	Material Science & Engineering	30	70	20	30	-	-	150
2425303	PCC	Strength of Materials for Mechanical Engg. (ME, Me (Auto))	30	70	20	30	20	30	200
2425304	PCC	Basic Thermodynamics (ME, ME (Auto))	30	70	20	30	20	30	200
2425305	PCC	Computer Aided Drafting andModeling (ME, ME (Auto))	-	-	20	30	20	30	100
2425306	PSI	Summer Internship – I (After 2 nd Sem) (Common for all programmes)	-	-	10	15	10	15	50
2400207	NRC	Indian Constitution (Common for All Programmes)	25	-	25	-	-	-	50
2400108	NRC	Essence of Indian Knowledge System and Tradition (Common for All Programmes)	25	-	-	-	-	-	25
2400110	NRC	Community/ Society Development (AIML, AE, CSE, ELX (R), CHE, EE, ME, ME (Auto), MIE, FTS, CACDDM, FPP)	25	-	-	-	-	-	25
	Tota	al	195	280	135	165	90	135	1000

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend: PTA:

Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will becarried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubics for these activities.

A) Course Code : 2425301 (T2425301/P2425301/S2425301)

B) Course Title : Manufacturing Engineering

C) Pre- requisite Course(s) : Mechanical Workshop Practice, Mechanical Properties of Materials

D) Rationale

Through manufacturing processes, the raw material is converted into a finished product. Knowledge of basic manufacturing processes such as Casting, Forming, Welding, and Machining is essential for students to perform duties in manufacturing industries/units. The basic knowledge of different manufacturing processes is essential to select the most appropriate process and related parameters for getting the desired results in terms of converting the raw material to finished product as per the requirements. This course on manufacturing engineering aims at providing knowledge regarding different types of manufacturing processes and use of related machines, equipment and tools safely. The knowledge gained through this course will also help the students to take up advanced and manufacturing related courses in the next semesters.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1.** Select suitable manufacturing process to produce various components.
- **CO-2.** Prepare product using different casting processes.
- **CO-3.** Prepare product using different forming processes.
- **CO-4.** Use joining process to produce jobs.
- CO-5. Machine jobs using machine tools like Lathe, Drilling, Milling, Shaping, Slotting etc.
- **CO-6.** Perform estimation and costing related calculations for components produced from mentioned four manufacturing processes.

F) Suggested Course Articulation Matrix (CAM):

	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	-	2	-	1	1			
CO-2	3	2	-	2	-	1	1			
CO-3	3	2	-	2	-	1	1			
CO-4	3	2	-	2	-	1	1			
CO-5	3	2	-	2	-	1	1			
CO-6	3	2	-	-	-	3	1			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Caumaa	Course		Scheme of Study (Hours/Week)						
Course Code			room iction (1)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	T						
2425301	Manufacturing Engineering	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Marl	ks)		
		_	ssessment 'A)	Self-Le Asses	Work& earning sment VA)	Lab Asse: (LA		+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425301	Manufacturing Engineering	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

PLA:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425301

Majo	r Theory Session Outcomes (TSOs)	Units	Relevant Cos
			Number(s)
	Classify manufacturing processes. Explain the given basic conventional	Unit-1.0 Introduction to Manufacturing Processes	CO1
TCO 4	manufacturing process.	1.1 Classification of basic manufacturing process	
150 1c.	Describe the given mechanical property.	based on Formative, Subtractive and Additive	
TSO 1d.		manufacturing processes; Chip-less and Chip-	
.00 _0.	manufacturing process for the given	removal processes, Primary and Secondary	
	application with justification.	manufacturing processes; Generating &	
		Forming processes; Conventional and Non-	
		Conventional Manufacturing Processes	
		1.2 Factors which influence selection of	
		manufacturing process for a particular	
		application.	
		1.3 Recall mechanical properties of metals.	
TSO 2a.	Explain the given casting process.	Unit-2.0 Casting Processes	CO2, CO6
TSO 2b.	Select pattern and allowances for the		
	given application with justification.	2.1 Introduction to casting, advantages, and	
TSO 2c.	Interpret the color coding on pattern	disadvantages of casting.	
	and core.	2.2 Pattern, types of patterns, pattern materials,	
TSO 2d.	Explain the given property(ies) of	pattern allowance, colour code	
	moulding sand.	2.3 Moulding sand constituents and its types,	
TSO 2e.	Explain the method of green sand	properties of moulding sand, moulding sand	
	mould preparation.	preparation, moulding tools and moulding	
TSO 2f.	Explain the moulding method and	boxes, types of moulds-green sand mould, dry	
	working of the given moulding	sand mould, loam sand mould	
	machine.	2.4 Methods of moulding, Moulding machines;	
TSO 2g.	Explain the use of the given core.	Jolting – Squeezing – Sand slinger, Construction	
TSO 2h.	Select suitable furnace for the given	and working principle.	
	application with justification.	2.5 Cores: Essential qualities of core materials,	
TSO 2i.	Explain the importance of gates and	core sand preparation, core binder, core boxes,	
	risers.	co2 process of core making, types of cores	
TSO 2j.	Find out pouring, solidification time	2.6 Melting furnace; Blast furnace, Cupola furnace,	
	and size of riser.	Crucible furnace, Pit Furnace, Induction	
TSO 2k.	Select appropriate casting process for	Furnace.	
	the given application with justification.	2.7 Casting processes: Green sand Casting,	
TSO 21.	Identify casting defects and explain	Permanent mould casting, Shell mould casting,	
	their causes.	Investment casting, Centrifugal casting,	
TSO 2m.	Select a suitable inspection method for identifying given defects in the given	2.8 Gating system, types of gating system, design of riser	
	casting with justification.	2.9 Defects in casting: causes and remedies.	
TSO 2n.	Perform estimation and costing related	2.10 Inspection of castings: Visual inspection,	
	calculations for the given product to be	pressure test, magnetic particle inspection, dye	
	cast by the given casting method.	penetration inspection, Radiographic	
	-	inspection, ultrasonic inspection.	
		2.11 Safety precautions in metal casting.	
		2.12 Estimation and costing of casting components.	
TSO 3a.	Explain metal forming and nature of plastic deformation.	Unit-3.0 Metal Forming Processes	CO3, CO6
TSO 3h	Explain Cold and Hot working processes	3.1 Introduction, nature of plastic deformation.	
	and their effects on metal properties.	3.2 Bulk and Sheet metal forming processes.	

D.C.	The arm Consists Outcomes (TCOs)		Units	Relevant
iviajo	r Theory Session Outcomes (TSOs)			Cos Number(s)
TSO 3c.	Differentiate Bulk and Sheet metal forming processes.	3.3	Hot working, cold working – advantages and disadvantages of hot working and cold	Number(s)
	Explain the given Bulk forming process. Calculate major parameters related to the given Bulk forming process (Drop	3.4	working. Bulk metal forming processes: Rolling, Forging (Smith forging, Drop forging, Upset forging),	
TSO 3f.	forging, Rolling, Extrusion, Drawing). Select relevant Bulk forming process for the given application or component with justification.	3.5	Extrusion, Drawing. Press Working: Types of presses – mechanical and hydraulic presses – press tools and accessories, press working operations.	
TSO 3g.	Explain the given Sheet metal forming process.	3.6	Sheet metal forming processes (Press tools operations): Shearing, Blanking-Punching,	
TSO 3h.	Calculate main parameters related to the given Sheet metal forming process (Punching-Blanking, Deep Drawing, and Bending).	3.7	Embossing-Coining, Piercing, Trimming, Shaving, Nibbling, Notching, Lancing, Deep drawing, Spinning, Bending, Stretch forming, Estimation and costing of metal forming	
TSO 3i.	Select relevant Sheet metal forming process for the given application or component with justification.		components.	
TSO 3j.	Perform estimation and costing related calculations for the given product to be formed using bulk and sheet metal forming method.			
TSO 4a.	Classify different joining processes.	Unit	-4.0 Joining Processes	CO4, CO6
	Explain the given Oxy-acetylene welding flame(s).	4.1	Introduction to Joining Processes: Permamnet	CO4, CO0
TSO 4c.	Describe Oxy-acetylene welding, related equipment and material.		and Temporary; Welging, Soldering, Brazing, Adhesive bonding.	
TSO 4d.	Describe the given Arc welding process (Manual metal arc welding, Inert-gas	4.2	Classification of welding processes, types of welded joints.	
	shielded arc welding- TIG and MIG, Submerged arc-welding), related equipment and materials.	4.3	Gas welding: Oxy-acetylene welding, types of flame, Oxy-acetylene welding equipment, filler rod, Gas cutting.	
TSO 4e.	Explain the process of resistant welding (Spot and Seam), related equipment and materials.	4.4	Arc welding: Principle of arc creation, Arc welding equipment, electrodes, arc blow, Types of Arc welding process. Working	
TSO 4f.	Explain the process and application of Thermit welding, Friction welding, Explosion welding, Brazing, and Soldering.		principle, equipment, process parameters, applications of: Manual metal arc welding (flux coated electrodes), Inert-gas shielded arc welding, Tungsten inert-gas welding (TIG),	
TSO 4g.	_	4.5	Metal inert-gas arc welding (MIG), Submerged arc-welding, Plasma arc welding. Resistance welding – Butt, Seam, Spot,	
TSO 4h.	Identify weld defects and their causes.		Projection and Percussion.	
TSO 4i.		4.6	Other welding processes: Thermit welding, Friction welding, Explosion welding, Forged	
TSO 4j.	Perform estimation and costing related calculations for the given product to be	4.7	welding, Friction Welding. Brazing, soldering and Adhesive bonding.	
	welded using different welding	4.8	Effects of welding heat-Heat affected zone	
	processes.	4.9	Weld defects and their causes. Safety precautions in welding.	
			Estimation and costing of welded components	
TSO 5a.	Explain chip formation and types of chips.		-5.0 Machining and Machine Tools	CO5, CO6
TSO 5b.	Explain mechanics of orthogonal metal cutting.		hining: Introduction to metal cutting.	
TSO 5c.	_	5.2	Chip formation and types of chips.	
	nomenclature.	5.3	Mechanics of orthogonal metal cutting	
TSO 5d.	Explain tool materials and tool wear.	5.4	Cutting tool material and geometry	

Majo	r Theory Session Outcomes (TSOs)		Units	Relevant Cos Number(s)
TSO 5e.	Estimate tool life for the given values of	5.5	Tool wear and tool life.	
	speed fee and DoC.	5.6	Cutting fluids, types of cutting fluids, selection	
TSO 5f.	Select suitable cutting fluid for the		of cutting fluid, method of application of	
	given situation.		cutting fluids	
TSO 5g.	Explain the method of application of			
	the given cutting fluid.	Mac	hine tools:	
TSO 5h.	Explain the operation of the given lathe	5.7	Lathe machine: introduction to lathe machine,	
	machine.		types of lathe machine, basic parts and	
TSO 5i.	Explain the function of the given Lathe		function, basic operations and tools.	
	machine part(s).	5.8	Milling machine: introduction to milling	
TSO 5j.	Explain the given Milling machine		machine, types of milling machine, basic parts	
	operation and the tool used.		and function, basic operations and tools	
TSO 5k.	Explain the function of the given Milling	5.9	Hole making operation: drilling, reaming,	
	machine part(s).		boring, tapping.	
TSO 51.	Describe the given hole making	5.10	Introduction and application of shaper, planer,	
	operation(s) (drilling, reaming, boring,		slotting machine.	
	tapping).		Introduction and application of jigs and fixtures	
TSO 5m.	Explain the working of the given	5.12	Estimation and costing of machining	
	Shaping/ Planing/Slotting machine.		components.	
	Explain use of jigs and fixtures.			
TSO 50.	Calculate Speed, Feed, DoC in the given			
	operation to be performed on			
	Lathe/Milling/Drilling/Shaping			
TC 0. 5	machine.			
TSO 5p.				
	produce the given part using Lathe,			
	Milling, Drilling and Shaping			
TSO Fe	machine(s).			
130 5q.	Perform estimation and costing related			
	calculations for the given product to be machined using different machine			
	tools.			
	LUUIS.			

 $\textbf{Note:} \ \mathsf{One} \ \mathsf{major} \ \mathsf{TSO} \ \mathsf{may} \ \mathsf{require} \ \mathsf{more} \ \mathsf{than} \ \mathsf{one} \ \mathsf{Theory} \ \mathsf{session/Period}.$

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425301

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant Cos Number(s)
LSO 1.1. LSO 1.2. LSO 1.3.	Identify type of pattern Calculate pattern allowances as per the given requirement and material. Prepare pattern using all the required allowances as per the given drawing.	1.	Prepare a single piece pattern considering the shrinkage allowances, draft allowance, machining allowances and shake allowances	CO2
LSO 2.1. LSO 2.2. LSO 2.3. LSO 2.4. LSO 2.5. LSO 2.6.	Identify the ingredients of green sand moulding. Identify different types of patterns. Use moulding boxes and other tools to create green sand mould. Prepare green sand mould using the given pattern. Withdraw pattern from the sand. Provide provisions for Gating system, Runner and Riser in the sand mould.	2.	Prepare a green sand mould using the following patterns: • Single piece pattern, • Multi piece pattern, • Match plate pattern, • Gated pattern, • Sweep pattern, • Loose piece pattern,	CO2
LSO 3.1.	Interpret the drawing of the component.	3.	Produce a simple part using green sand casting and single piece pattern as per the given component drawing.	CO2

LSO 3.2.	Prepare sound green sand mould with			
	gating system and riser.			
LSO 3.3.	Use furnace to melt the metal at			
	pouring temperature.			
LSO 3.4.	Pour the molten metal with safety and			
	in minimum time inside the mould			
	cavity.			
LSO 3.5.	Monitoring solidification of casting and			
250 5.5.	remove the casted part from the mould			
	· ·			
150.26	without damaging the part.			
LSO 3.6.	Cleaning the casted part.			
LSO 4.1.	Select the recrystalisation	4.	Produce a simple job using any cold/hot	CO3
	temperature for the given metal.		working forming process.	
LSO 4.2.	Select appropriate hot/cold forming			
	process and related parameters.			
LSO 4.3.	Produce part using the selected			
	hot/cold forming process.			
LSO 5.1.	Select appropriate die and punch	5.	Prepare a simple job like washer etc. using any	CO3
	combination.		sheet metal forming process (press tool	
LSO 5.2.	Select process parameters.		operations)	
LSO 5.3.	Hold the sheet properly in the press		'	
	tool.			
LSO 5.4.	Produce the part using the required			
250 5.4.	sheet metal forming process.			
LSO 6.1.	Arrange the oxy-accetylene welding	6.	Prepare the following joints using Oxy-	CO4
130 6.1.		0.		CO4
150.63	setup.		acetylene gas welding process.	
LSO 6.2.	Set the welding process parameters.		Lap joint,	
LSO 6.3.	Develop appropriate flame type as per		Butt joint	
	metal.		T joint	
LSO 6.4.	Set the sheets in Lap/Butt/T positions.			
LSO 6.5.	Perform welding			
LSO 6.6.	Follow safety practices.			
LSO 7.1.	Arrange the Arc welding setup.	7.	Prepare the following joints using Manual Arc	CO4
LSO 7.2.	Fix the proper flux coated electrode in		welding process.	
	the holder.		Lap joint,	
LSO 7.3.	Set the welding process parameters.		Butt joint	
LSO 7.4.	Maintain proper acr for welding.		• T joint	
LSO 7.5.	Set the plates in Lap/Butt/T positions.		- 1 joint	
LSO 7.6.	Perform welding			
LSO 7.7.	Follow safety practices.			
LSO 8.1.	Arrange the TIG/MIG welding setup.	8.	Prepare the following joints using TIG/MIG	CO4
LSO 8.2.	Set the TIG/MIG welding process	J .	welding process.	
	parameters.		• Lap joint,	
LSO 8.3.	Set the plates/pipes in Lap/Butt/T			
130 0.3.	positions.		Butt joint	
150.0.4	Perform welding		T joint	
LSO 8.4.	_			
LSO 8.5.	· ·		Drawara a Dalagay and the state of the State	604
	Arrange the SS welding setup.	9.	Prepare a Balcony grill using welding of	CO4
LSO 9.2 S	Set the SS welding process parameters.		Stainless Steel (SS) pipes.	
LSO 9.3 S	Set the SS rods/pipes in Lap/Butt/T			
r	positions.			
-	Perform SS welding			
	_			
LSU 9.5 F	Follow safety practices.			
165 :-				
	Arrange the Spot-welding setup.	10.	Perform Spot welding operation.	CO4
LSO 10.2.	Set the Spot-welding process			
	parameters.			
	Set the plates in spot welding machine.			
	Perform Spot welding			
LSO 10.5.	Follow safety practices.			

150 11 1	Arrango the Cas sutting setup	11	Perform gas cutting apparation on a shoot as per	CO4
	Arrange the Gas cutting setup.	11.	Perform gas cutting operation on a sheet as per	CO4
130 11.2.	Set the Gas cutting process		the given drawing.	
	parameters and flame.			
LSO 11.3.	Set the plates for cutting as per			
	drawing.			
	Perform Gas cutting			
LSO 11.5.	Follow safety practices.			
LSO 12.1.	Arrange Solder/Braze and	12.	Make a joint using Soldering/Brazing.	CO4
	Soldering/Brazing tool.			
LSO 12.2.	Choose and set appropriate			
	temperature for Soldering/Brazing.			
LSO 12.3.	Apply flux.			
	Set the parts/crack for			
	Soldering/Brazing.			
LSO 12.5.	Perform Soldering/Brazing.			
	Follow safety practices.			
	Identify all the 6 tool angles and nose	13.	Grind the angles on a single point cutting tool	CO5
130 13.1.	radius.	13.	as per drawing using tool makers microscope	603
150 12 2	Use Tool Makers microscope		as per drawing using tool makers microscope and grinder.	
			and grilluer.	
LSU 13.3.	Grind all 6 angles as per given values.			
150 14 1	Interpret the drawing	14.	Draduce parts on Lathe machine with fellowing	CO5
	Interpret the drawing	14.	Produce parts on Lathe machine with following	CUS
LSO 14.2.	Setup the Lathe for the given		operations as per the given drawing:	
	operation.		Facing, Step Turning, Taper turning and	
LSO 14.3.	Choose the correct work holding		Chamfering	
	device.		Groove Cutting & Knurling	
LSO 14.4.	Choose suitable tools for the given		Thread Cutting	
	Lathe operation.		Timeda catting	
LSO 14.5.	Perform centering of the job.			
LSO 14.6.	Set machining process parameters for			
	the given lathe operation.			
LSO 14.7.	Perform the given Lathe operation			
	(Facing, Step Turning, Taper turning,			
	Chamfering, Groove Cutting, Knurling,			
	Thread Cutting).			
LSO 14.8.	Follow safety practices.			
		15	Draduse parts on Milling machine with	COL
	Interpret the drawing	15.	Produce parts on Milling machine with	CO5
130 15.2.	Setup the Milling machine for the		following operations as per the given drawing:	
160 17 1	given operation.		Pocket cutting	
LSO 15.3.	Choose the correct work holding		Groove Cutting	
	device.			
LSO 15.4.	Choose suitable cutter for the given			
	Milling operation.			
LSO 15.5.	Set machining process parameters for			
	the given Milling operation.			
LSO 15.6.	· · · · · · · · · · · · · · · · · · ·			
	(Pocket cutting, Groove cutting).			
LSO 15.7.	Follow safety practices.			
LSO 16.1.	Interpret the drawing	16.	Perform following hole making, finishing and	CO5
	Setup the Drilling/Boring machine for		threading operations as per the given drawing:	
	the given operation.		Hole making	
LSO 16.3.	Choose the correct work holding		Boring	
	device.		_	
LSO 16.4.	Choose suitable bit/reamer/tap for the		Reaming	
	given Hole related operation.		 Tapping 	
ISO 16 5	Set process parameters for the given			
100 10.5.	Hole operation.			
150 16 6	Perform the given hole operation (Hole			
130 10.0.	making, Boring, Reaming, Tapping).			
150 16 7	Follow safety practices.			
130 10.7.	i onow safety practices.	<u> </u>		

LCO 17.1 Interpret the drawing	Parform following apprations on Shaping	CO5
LSO 17.1. Interpret the drawing	Perform following operations on Shaping	COS
LSO 17.2. Setup the Shaper for the given	machine per the given drawing:	
operation.	Key way cutting	
LSO 17.3. Choose the correct work holding	Dove tail groove cutting	
device.		
LSO 17.4. Choose suitable tools for the given		
Shaper operation.		
LSO 17.5. Perform the positioning of the selected		
tool in the Shaper tool post.		
LSO 17.6. Set machining process parameters for		
the given Shaper operation.		
LSO 17.7. Perform the given Shaper operation		
(Key way cutting, Dove tail groove		
cutting).		
LSO 17.8. Follow safety practices.		

- L) Suggested Term Work and Self Learning: S2425301 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Discuss the advantages and limitations of chip-less and chip-removal processes of manufacturing.
 - Prepare the list of domestic and industrial applications of various generating and forming processes of manufacturing.
 - List out at least 10 applications of chip-less processes of manufacturing.
 - Identify the factors affecting the selection of pattern material for a given application.
 - Compare and prepare a chart showing the applications of various types of patterns.
 - Identify the need of core prints.
 - Sketch the gating system for pouring metal in a casting.
 - Explain the causes and remedies of common casting defects.
 - Explain different casting processes.
 - Solve numerical problems on forming parameters related to Bulk and Sheet metal forming processes.
 - Compare the cold working and hot working of metals.
 - Explain the importance of recrystallisation temperature in mechanical working of metals.
 - Prepare a list of methods used for production of pipes and tubes.
 - Prepare a chart showing the different sheet metal operations.
 - Explain different Bulk and Sheet metal forming processes.
 - Solve simple numerical problems on forming parameters related to Bulk and Sheet metal forming processes.
 - List the advantages, disadvantages and applications of welding over other joining processes.
 - Compare the merits, demerits and applications of MIG and TIG.
 - Distinguish Thermit welding from Manual arc welding.
 - Compare spot and seam welding.
 - Explain different Welding processes.
 - Solve simple numerical problems on welding parameters related to different welding processes.
 - Explain the effect of various tool angles on metal cutting.
 - Prepare a list of commonly used cutting fluid and lubricants in given conditions.

- Solve numerical problems using Taylor's tool life equation.
- Solve simple numerical problems on Speed, Feed, Doc related to different machining operations.
- Write the specifications of shaper, slotter and planner available in your institute workshop.
- Perform estimation and costing related calculations for the given product manufactured by any or combination of four mentioned basic manufacturing processes.

a. Micro Projects:

- Surf www and collect five videos related to manufacturing of different domestic and industrial components and submit it to course coordinator. (Individual student Assignment).
- Collect information of manufacturing industries/workshops/shops in your city and vicinity.
- Prepare a single point cutting tool using eraser and paper cutter/blade.
- Collect photographs of all the cutting tools generally used in today's industries with CBN, PCBN, TC inserts (group work with group size of five students each)
- Surf www and identify five domestic/industrial components produced by casting processes. Write steps of its manufacturing and materials, machines and tools used. (Individual student Assignment).
- Prepare a chart to show the different tools used for making patterns.
- Prepare a chart showing the various casting defects and ways to prevent them.
- Surf www and identify five domestic/industrial components produced by forming processes. Write steps of its manufacturing and materials, machines and tools used. (Individual student Assignment)
- Adjust stroke length of quick return mechanism of shaping machine. Record time required for various stroke lengths.
- Prepare a chart of recommended cutting parameters and cutting tools used for Shaping, Planning and slotting of Steel, Brass, Aluminum, Copper, Cast Iron and their alloys.
- Collect videos of manufacturing of different components which involve Shaping, Planning and Slotting operations.
- Collect/download at least four different machine tool manufacturer's catalogues and at least one catalogue each of cutting tool, work holding device and tool holder related to Shaping machine.
- Collect videos of manufacturing of different components which involve Milling operations.
- Collect/download at least four different machine tool manufacturer's catalogues and at least one catalogue each of cutting tool, work holding device and tool holder related to Milling machine.

b. Other Activities:

1. Seminar Topics:

- Additive and Subtractive manufacturing processes
- Blow molding
- Plastic injection machines
- Investment Casting
- Shell Casting
- Various extrusion machines.
- Various forging machines.
- Different deep drawing punches and dies.
- Welding of Stainless Steel
- Procedure to measure cutting forces in lathe and Milling operations using dynamometers.

2. Visits:

• Visit a nearby industry/workshop to identify and list the various types of manufacturing processes used.

Semester - III

- Visit a nearby foundry and prepare a report comprising of details (type, material, process, etc) of items produced, quantities, consumables and equipment used with specification, process parameters being used.
- Visit a nearby Rolling mill/allied manufacturing processes industry and prepare a report comprising of details (type, material, process, etc) of items produced, quantities, different sections, equipments used with specification, process parameters being used.
- Visit a nearby fabrication industry and prepare a report comprises of types of items produced, quantities, different sections, equipments used with specification and consumables.
- Visit a nearby industry or your institute's workshop and identify the different types of Machine tools, Cutting tools, Measuring tools, cutting fluids in use.
- Visit any industry and estimate tool wear for any mass-produced component.

3. Self-Learning Topics:

- Various Mechanical engineering materials.
- Slush Casting
- · Deep Drawing,
- Stretch Forming
- Resistance welding
- Spinning on Lathe
- Internal Turning
- Gear cutting on Milling

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
Theory Assessment (TA)**		Term Work Assessment (TWA)	Lab Assessment (LA)#						
Progressive Theory	End Theory Assessment (ETA)	Term Work& Self Learning Assessment	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)					

COs	Assessment (PTA) Class/Mid		Assignments	Micro Projects	Other Activities*		
CO-1	Sem Test 10%	10%	10%	-	-	-	-
CO-2	20%	20%	20%	20%	20%	25%	25%
CO-3	20%	20%	20%	20%	20%	15%	25%
CO-4	20%	20%	20%	20%	20%	30%	25%
CO-5	20%	20%	20%	20%	20%	30%	25%
CO-6	10%	10%	10%	20%	20%	-	-
Total	30	70	20	20	10	20	30
Marks			50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs
 mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions
 related to achievement of each COs.
- M) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Introduction to Manufacturing Processes	06	CO1	06	3	-	3	
Unit-2.0 Casting Processes	10	CO2, CO6	15	4	4	7	
Unit-3.0 Metal Forming Processes	10	CO3, CO6	15	4	4	7	
Unit-4.0 Joining Processes	10	CO4, CO6	16	4	5	7	
Unit-5.0 Machining and Machine Tools	12	CO5, CO6	18	5	5	8	
Total	48	-	70	20	18	32	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested AssessmentTable for Laboratory (Practical):

		Delevent		PLA/ELA Performance	
S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PRA*	PDA**	Viva- Voce
1.	Prepare a single piece pattern considering the shrinkage allowances, draft allowance, machining allowances and shake allowances	CO2	(%) 40	50	(%) 10
2.	Prepare a green sand mould using the following patterns: Single piece pattern,Multi piece pattern,Match plate pattern,Gated pattern,Sweep pattern,Loose piece pattern,	CO2	40	50	10
3.	Produce a simple part using green sand casting and single piece pattern as per the given component drawing.	CO2	40	50	10
4.	Produce a simple job using any cold/hot working forming process.	CO3	40	50	10
5.	Prepare a simple job like washer etc. using any sheet metal forming process (press tool operations)	CO3	40	50	10
6.	Prepare the following joints using Oxy-acetylene gas welding process. • Lap joint, • Butt joint • T joint	CO4	40	50	10
7.	Prepare the following joints using Manual Arc welding process. Lap joint, Butt joint T joint	CO4	40	50	10
8.	Prepare the following joints using TIG/MIG welding process. Lap joint, Butt joint T joint	CO4	40	50	10
9.	Prepare a Balcony grill using welding of Stainless Steel (SS) pipes.	CO4	40	50	10
10.	Perform Spot welding operation.	CO4	40	50	10
11.	Perform gas cutting operation on a sheet as per the given drawing.	CO4	40	50	10
12.	Make a joint using Soldering/Brazing.	CO4	40	50	10
13.	Grind the angles on a single point cutting tool as per drawing using tool makers microscope and grinder.	CO5	40	50	10
14.	Produce parts on Lathe machine with following operations as per the given drawing: • Facing, Step Turning, Taper turning and Chamfering • Groove Cutting & Knurling • Thread Cutting	CO5	40	50	10
15.	Produce parts on Milling machine with following operations as per the given drawing: • Pocket cutting • Groove Cutting	CO5	40	50	10
16.	Perform following hole making, finishing and threading operations as per the given drawing:	CO5	40	50	10

		Dalawant	PLA/ELA			
S. No.	Laboratory Practical Titles	Relevant COs	Perfor	Viva-		
3. NO.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce	
		ivalliber(3)	(%)	(%)	(%)	
	Hole making					
	Boring					
	Reaming					
	Tapping					
17.	Perform following operations on Shaping machine per the	CO5	40	50	10	
	given drawing:					
	Key way cutting					
	Dove tail groove cutting					

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools	Broad Specifications	Relevant Experiment/
	and Software		Practical Number
1.	Green Sand Moulding setup, Casting Setup and Patterns	Foundry tools and equipments – hand riddle, shovel, Hand, peen & floor rammer, sprue pin, strike off bar, mallet, draw spike, vent rod, lifters, trowels, slicks, smoothers, swab, spirit level, gate cutter, gaggers, nails and wire pieces, clamps, cotters and wedges, Molding box, crucible etc.	1, 2,3
3.	Extruder/Drawing Machine	Standard size	4
	Hot Forging equipment	Standard hot forging press suitable for forging small parts complete with all tools and accessories.	5
4.	Punching- Blanking Press	1 - 5 ton capacity suitable for small products like washers etc. Dies and Punches	5
5.	Arc Welding Machine	AC transformer – Step down, oil cooled, 3-phase, 50 Hz, Current rating = 50-400 A, Open circuit voltage = 50-90 V, Energy consumption = 4 kWh per kg of metal deposit, Power factor = 0.4, Efficiency = 85 %. Electrode Holder, Shield, Chipping hammer, Wire Brush, File eyc.	7
6.	TIG welding setup	3 phase, 230-415 Volt	8, 9
7.	MIG welding setup	Standard MIG welding machine for welding of low carbon steel, stainless steel, aluminium etc.	8, 9
8.	Spot Welding Setup	Air cooled transformer Easy operation and maintenance with pedal-level	10

S.	Name of	Broad	Relevant
No.	Equipment, Tools	Specifications	Experiment/
	and Software		Practical Number
		type spring-press structure	
		Adjustable welding time, easy welding repeated	
		Suitable for low carbon steel, wire, stainless steel	
		plate etc. Input voltage(V): 220	
		Rated input capacity (KVA): 10	
		Adjusting series: 7	
		Rated duty cycle (%): 20	
		Arm stretch length(mm): 180	
		Electrode pressure (Kg): 120	
		Welding thickness(mm): 0.3+0.3 ~ 2+2	
		Usable electrode(mm): 81	
		Phase: 1 PH	
	Seam Welding Machine	75 KVA, Weld head: Cylinder dia 100 mm, stroke 100 mm,	10
9.	Oxy-acetylene	Gas cylinder with full of Acetylene Gas	6,11
	welding and cutting	Gas cylinder with full of Oxygen Gas	
	setup	Hose Pipe: 30 m	
		Pressure Gauge set (Oxy & Acetylene Regulator)	
		Welding Torch set Cutting Torch set	
		Other necessary standard accessories for welding	
		and cutting operation	
10.	Soldering Station,	Super fast heating 200 °C ~ 480 °C (392 °F ~ 896 °F), Precise, Stable,	12
	Solder, Flux	Rapid Heating & Instant Temp., Compensation, Temperature	
		Stability: ± 1 °C (Stationary air, no load), Tip to Ground Resistance: <	
		2 Ω, Tip to Ground Potential: < 2 mV	
		Max. Power: 60 W (Unit, Max.). Sold. Iron: 50 W (24 V AC)	
		Soft Touch Up/Down Keys ensure precise setting of Temperature	
		and a key card to protect their settings. S.M.D. Hot Tweezer	
		Pointed Tip	
11.	Brazing rod, Braze,		12
11.	Flux	-	12
12.	Tool Makers	Monocular optical tube, erect image, angle reading: min 6', Range	13
	microscope	360-degree, Eyepiece magnification 15x, Objective magnification	
		2x, Light source Tungstan bulb	
	Tool and Cutter	Longitudinal travel of table: 230mm	13
	grinder	Cross travel of saddle: 180mm	
	3	Vertical adjustment of wheel head: 120mm	
		Rotary angle of wheel head: 360°	
		Rotary angle of up-down spindle: 360°	
		Working table area: 620 x 190mm	
		Size of wheel:	
		180 x 25 x 31.75mm 125 x 50 x 31.75mm	
		Speed of wheel: 3,600 RPM	
		Motor: 3/4 HP, 110V / 220V / 380V	
13.	Lathe machine	Center Lathe Machine (Length between centers: 2000 mm)	14
	Different Single	Single point cutting tool with various inserts like WC Coated Carbide,	14
	point and multi	CBN, PCBN	
	point cutting tools	Milling Cutter, Drill Bits, Reamers, Taps, Shaper tool, Grinding wheels	

S.	Name of	Broad	Relevant
No.	Equipment, Tools	Specifications	Experiment/
	and Software		Practical Number
14.	Milling machine with	Face of Body-12"	15
	required set of work	Surface of Table-12"x54"	
	holding devices,	size of tee slots No-1/2"=3	
	cutting tools,	Cross-12	
	accessories and tool	Vertical Traverse-24"	
	holders.	Longitudinal automatic-30"	
		Table Rotation side to side-45"-0-45"	
		Standard Arbour-1"	
		Taper of Spindle-ISO-40	
		No. of Spindle Speed-9	
		Range of Spindle speed RPM-45 TO 1000	
		No. of Feed Longitudinal-3.S.F.M	
		Motor H.P & R.P.M: 3 H.P/1440 RPM	
15.	Drilling machine	Drilling Capacity: 40 mm	16
	with required set of	Column Diameter: 75 mm	
	work holding	Spindle Hole Taper: MT-2	
	devices, cutting	Spindle Speeds: 50–3000 RPM	
	tools, accessories	Spindle Nos. To table Dist.: 605 mm	
	and tool holders.	Spindle Center To Pillar: 206 mm Table Size: 260 mm	
16	Shaper with required	Motor: 0.5 HP Length of stroke: Max.500 mm	17
16.	Shaper with required set of work holding	No. of Ram cycles / min.: Max.140 strokes/min.	17
	devices, cutting	Motor Power: A.C. 7.5 H.P.	
	tools, accessories	Wotor Fower. A.C. 7.5 H.F.	
	and tool holders.		
17.	Grinding machine	Working Surface of the table- 225 x 450mm	All
17.	Officially machine	Maximum Height from Table to Grinding Wheel- 275mm	All
		Vertical Feed Least Count- 0.01mm	
		Micro Feed Least Count- 0.002mm	
		Spindle Speed- 2800 RPM	
		Electric Motor recommended- 1 HP - 2800 RPM	
18.	Lathe tool	Forces in X - Y - Z directions will be shown individually	14
	dynamometer	Capacity: X, Y, Z - Force 500 Kg	
	.,	Dynamometer Mounting hole-25 mm dia Hole to mount sensor on	
		tool post.	
		Excitation: 10v Dc	
		Linearity: 2%	
		Accuracy: 2%	
		Cross-Sensitivity: 5%	
		Max. Overload: 150 %	
19.	Milling tool	Forces in X - Y - Z directions will be shown individually	15
	dynamometer	Capacity: X, Y, Z - Force 500 Kg	
		Job Mounting holes M10 provided to fix machine vise.	
		Mounting Type-350(L) x 350(W) x 100(H)mm.	
		Dynamometer Mounting hole-25 mm dia Hole to mount sensor on	
		tool post.	
		Excitation: 10v Dc	
		Linearity: 2%	
		Accuracy: 2%	
		Cross-Sensitivity: 5%	
20.	Drill tool	Max. Over Load: 150 %	16
20.		Capacity- 500Kg Thrust load, 20 Kgm-torque. Mounting- Flang type to mount on the machine bed.	16
	dynamometer	Sensor Type- Straingauge based 350Ω bridge.	
		Job Mounting- Slots provided on the flange plate to mount the	
		machine vise.	
		Excitation: 10v Dc	
	<u>l</u>		

S. No.	Name of Equipment, Tools	Broad Specifications	Relevant Experiment/
	and Software	·	Practical Number
		Linearity: 2%	
		Accuracy: 2%	
		Cross-Sensitivity: 5%	
		Max. Over Load: 150 %	
21.	Thermometer	Infrared thermometer	All
		Temperature range: - 30°C to 500°C	
		D/S ratio – 10:1	
		IP40 dust & water resistant	
22.	Equipment and chart	Equipment and chart for Acceptance test of machine tools, Dial	All
	for Acceptance test	Gauges, Sprit Levels, Test Mandrels, Straight edges. True running of	
	of machine tools	the spindle, Perpendicularity/ Parallelism between spindle and base	
		plate, Perpendicularity between the feed movement and the	
		baseplate/guideways,	
23.	Vernier Calipers &	Vernier Calipers: stainless steel body, Range: 0-150mm Resolution:	All
	Micrometers	0.1mm	
		Micrometer: Material- Carbon Steel	
		Graduated to read up to 25mm in 0.01mm divisions with screw pitch	
		of 0.5mm, ratchet lock nut	
24.	Vernier height	Carbide tipped scriber. With fine adjustment. Made of stainless steel	All
	gauge.	or carbon steel.	
25.	Depth gauge	Graduation: 0.05mm or 0.02mm,	All
		Stainless steel	
26.	Screw thread	Micrometer Type: Screw Thread Micrometer, 14-18 TPI	
	micrometer	Range (in): 0 - 1" Capacity Pitch Diameter	
		Graduations (in): .001"	
		Anvil/Spindle Material: Steel	
		Anvil Type: Double V-anvil	
		Spindle Type: Pointed spindle	
27.	Screw pitch gauge	For metric, whitworth and unified threads	

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No. 1.	Manufacturing technology volume 1	P.N. Rao	McGrawHill Education ,2017 ISBN: 978-1259062575
2.	Manufacturing technology volume 2	P.N. Rao	McGraw Hill Education ,2018 ISBN: 978-9353160524,9789353160524
3.	A Textbook of manufacturing Technology-1	Dr. P.C. Sharma	S. Chand,2011 ISBN:9788211928212
4.	A Textbook of manufacturing Technology-2	Dr. P. C. Sharma	S. Chand,2013 ISBN:9788211928465
5.	Production technology	R.K Jain	Khana publishers,2021 ISBN:978-8195207565
6.	Manufacturing science	Amitabha Ghosh, Ashok KumarMallik	East-west Press Pvt-Ltd, 2010 ISBN:8176710636

(b) Online Educational Resources:

- 1. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 2. https://archive.nptel.ac.in/courses/112/107/112107083/
- 3. https://nptel.ac.in/courses/112106153
- 4. https://nptel.ac.in/courses/112107089
- 5. https://archive.nptel.ac.in/courses/112/105/112105233/
- 6. http://www.digimat.in/nptel/courses/video/112105233/L13.html
- 7. https://themechanicalengineering.com/milling-machine/
- 8. https://www.youtube.com/watch?v=RtGl5hpiT_w

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Lab Manuals
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Learning Packages

A) Course Code : 2425302 (T2425302/S2425302)

B) Course Title : Material Science and Engineering

C) Pre- requisite Course(s) : Basic knowledge about metal and non-metal

D) Rationale :

Material Science and Engineering is the basic understanding about the internal body structures, defects, properties etc of the ferrous and non-ferrous materials. So, knowledge of their properties and composition is essential. This subject deals with the solidification of metal and alloy, equilibrium diagrams and their application. It covers metrological aspects of metal and alloy such as micro and macroscopic examination of metal and alloy. The subject includes study of iron- iron carbon equilibrium diagrams, TTT diagram, various heat treatment processes. It discusses about failure analysis, different types of destructive testing, corrosion of materials.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

CO1- Correlate between the internal structure of materials and their properties

CO2- Interpret equilibrium phase diagrams

CO3- Select relevant Non-Ferrous metal & Anti friction alloy material for the given application

CO4- Use destructive and nondestructive testing method to test the properties of material.

CO5- Select relevant material for the given application.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes		Progra Spe Outco (PS	cific						
(COs)	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long		
	Discipline	Analysis	Development	Tools	Practices for	Management	Learning		
	Specific		of Solutions		Society,				
	Knowledge				Sustainability				
					and				
					Environment				
CO-1	3	-	-	1	-	-	-		
CO-2	3	2	1	-	-	-	1		
CO-3	3	1	-	-	-	-	1		
CO-4	3	2	1	1	1	-	1		
CO-5	3	1	1	-	-	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	6		Scheme of Study (Hours/Week)						
Course Code	Course Title	Class Instru (C		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2425302	Material Science and Engineering	02	01	-	02	05	04		

Legend:

H)

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Assessment Scheme:

		Assessment Scheme (Marks)						
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		Marks VA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Mark (TA+TWA+L
2425302	Material Science and Engineering	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425302

Major 1	Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO.1a	Analyze the Structure of materials at different levels, basic concepts of crystalline materials like unit cell, FCC, BCC, HCP, APF (Atomic Packing Factor), Coordination Number etc	 Unit-1.0 Introduction to Engineering Material 1.1 Classification of materials: metals, ceramics, polymers and composites, Engineering requirements of materials, relevant properties (physical, mechanical, thermal, electrical, chemical), cost; Range of applications; Material designation and standards; Ashby diagrams; Selection 	CO1
	Explain various types of bonds with their applications Choose the suitable	criteria and process 1.2 Nature of bonding in materials: metallic, ionic, covalent and mixed bonding; structure of materials: fundamentals of crystallography, symmetry operations, crystal systems,	
	crystalline material for given application. Identify the defects in given	Bravais lattices, unit cells, primitive cells, crystallographic planes and directions; structures of metals, ceramics, polymers, amorphous materials and glasses.	
	crystalline materials Solve the given problems	1.3 Defects in crystalline materials- 0-D, 1-D and 2-D defects; vacancies, interstitials, solid solutions in metals and ceramics, Frenkel and Schottky defects-dislocations, grain boundaries, twins, stacking faults; surfaces and interfaces.	
TSO 2a.	Describe major types of special steels such as HSLA, TRIP, Dual and Tool steels and cast-irons	Unit-2.0 Ferrous Metal & Phase Diagram 2.1 Ferrous metals and its Alloys, Iron ores – Pig iron: classification, composition and effects	CO2
TSO 2b.	Analyze the phase diagrams to identify the phases present in different alloy systems	of impurities on iron; Cast Iron: classification, composition, properties and uses; Wrought Iron: properties, uses/applications of wrought Iron; comparison of cast iron,	
TSO 2c.	Explain the structure and properties of given ferrous metals and alloys	wrought iron and mild steel and high carbon steel 2.2 Alloy Steels – purpose of alloying; effects of alloying elements – Important alloy steels: Silicon steel, High Speed	
TSO 2d.	Select relevant ferrous metal for specific applications.	Steel (HSS), heat resisting steel, spring steel, Stainless Steel (SS): types of SS, applications of SS — magnet steel — composition, properties and uses	
TSO 2e.	Describe Standard commercial grades of steel as per BIS and AISI	2.3 Standard commercial grades of steel as per BIS and AISI	
TSO 2f.	Describe the basic terminologies associated with identification of phase diagrams and reactions	2.4 Phase diagrams- Gibbs phase rule, Degrees of Freedom, Unary phase diagram, Introduction to Binary phase diagram- Isomorphous system, Eutectic system, Eutectoid system,	
TSO 2g.	Solve the given problems	Iron-Carbon binary diagram, flow sheet for production of iron and steel, Application of phase diagram	
TSO.3a	Explain the structure and properties of given nonferrous metals and	Unit-3.0 Non-Ferrous metal & Anti Friction Alloy 3.1 Non-ferrous metals and its Alloys – Properties and uses of aluminum, copper, tin, lead, zinc, magnesium and nickel;	CO3
TSO.3b	alloys Select relevant non-ferrous metal and anti-friction alloy for specific applications	Copper alloys: Brasses, bronzes – composition, properties and uses; Aluminum alloys: Duralumin, hindalium, magnalium -composition, properties and uses; Nickel alloys: Inconel, monel, nichrome – composition, properties and	
TSO.3c	Correlate the properties of given material with its composition.	uses 3.2 Anti-friction/Bearing alloys: Various types of bearing bronzes – Standard commercial grades as per BIS/ASME.	

Majo	r Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO.4a TSO.4b TSO.4c TSO.4d	Describe the various factors affecting/causing failures Select material for the given problem that can with stand catastrophic failures at different environment. Interpret the relationship between stress and strain Analyze the yielding behavior and dislocation influence on plastic deformation Determine properties of given material using different testing	 Unit-4.0 Destructive Testing and Nondestructive Testing 4.1 Failure analysis & Testing of Materials – Introduction to failure analysis; Fracture: ductile fracture, brittle fracture; cleavage; notch sensitivity; fatigue; endurance limit; characteristics of fatigue fracture; variables affecting fatigue life; creep; creep curve; creep fracture; 4.2 Destructive testing: Tensile testing; compression testing; Hardness testing: Brinell, Rockwell; bend test; torsion test; fatigue test; creep test. 4.3 Non-destructive testing: Visual Inspection; magnetic particle inspection; liquid penetrant test; ultrasonic inspection; radiography. 	CO4
TSO.4f	methods. Apply corrosion preventive techniques on the given material	 4.4 Corrosion of Metal And Alloys- Mechanism of corrosion, types of corrosion, corrosion prevention technique 4.5 Surface engineering processes: Coatings and surface treatments; Cleaning and mechanical finishing of surfaces; 	
TSO.4g	Describe corrosion prevention procedure for the given material. Describe coating and surface treatment procedure for the	Organic coatings; Electroplating and Special metallic plating	
TSO.4i	given material. Describe various methods to quantify the mechanical integrity of materials and their failure criteria Solve the given problems		
TSO.5a	Select relevant material for the	Unit-5.0 Advanced Material	CO5
	given problem. Evaluate the properties of given materials Identify the material from the given properties Use advanced material as per the given situation	 5.1 Polymers – Classification and applications; Polymerization techniques 5.2 Ceramics – Oxide ceramics, ceramic insulators, bioceramics and Glasses 5.3 Composites –Reinforcement, matrix, metal matrix composites, ceramic composites, polymer composites 5.4 Biomaterials, optical materials, high temperature materials, energy materials, and nanomaterials 5.5 Conducting and resisting materials – types, properties and applications; 5.6 Semiconducting materials – properties and applications; 5.7 Magnetic materials – Soft and hard magnetic materials and applications 5.8 Superconductors and dielectric materials – properties and applications 5.9 Smart materials-Piezoelectric, magnetostrictive and electrostrictive materials. 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2425302 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Calculate phase % of given binary alloy using tie line rule and lever rule.
 - Draw atomic structures of substitutional solid solution.
 - Prepare chart for different grain size structure.
 - Prepare color diagram using drawing sheet of any one binary alloy

b. Micro project:

- Prepare the model representing BCC/FCC/HCP structure of a given metal using balls and adhesive materials
- Collect 05 ductile and brittle material and determine the fracture characteristics and submit a detail report including Analysis of the output.
- Determine the micro-structure of Cast Iron, Mild Steel, Brass Solder under, Annealed, Cold Worked, forged/rolled conditions and submit a detail report

c. Other Activities:

1. Seminar Topics:

- Smart materials
- Destructive and nondestructive testing
- Surface coating and plating

2. Visits:

- Visit nearby steel plant and prepare a detail report on the destructive and nondestructive methods used for testing and on basis of given criteria
- Visit nearby advanced material lab and prepare a detail report on the advanced machines and equipment's with specification used for testing of ferrous, nonferrous, and advanced material.

3. Self-Learning Topics:

- Standard commercial grades of steel as per BIS and AISI
- Metallography
- Material characterization
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Course Evaluation Matrix								
		Theory Asses	sment (TA)**	Term Wo	ork Assessm	ent (TWA)	Lab Assessment (LA)#				
Progressive End Theory Theory Assessment (ETA) COs (PTA) Term Work Asses					Vork & Self Assessmen	•	Progressive Lab Assessment	End Laboratory Assessment			
		Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
		Sem Test			Projects	Activities*					
	CO-1	15%	15%	15%	20%	-	-	-			
	CO-2	20%	20%	10%	20%	-	-	-			
	CO-3	20%	20%	15%	20%	33%	-	-			
	CO-4	30%	30%	30%	20%	33%	-	-			
	CO-5	15%	15%	30%	20%	34%	-	-			
	Total Marks	30	70	20 20 10 50			-	-			

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N) #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- **N)** Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Engineering Material	8	CO1	13	4	4	5
Unit-2.0 Ferrous Metal & Phase Diagram	10	CO2	15	4	5	6
Unit-3.0 Non-Ferrous Metal & Anti Friction Alloy	10	CO3	14	4	4	6
Unit-4.0 Destructive Testing and Nondestructive Testing	12	CO4	16	4	5	7
Unit-5.0 Advanced Material	8	CO5	12	4	4	4
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

- O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.
- Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Foundations of Materials Science and Engineering	William F. Smith Javad Hashemi Dr. Francisco Presuel- Moreno	McGraw Hill, 2022 ISBN-10: 9355322178 ISBN-13: 978-9355322173
2.	Callister's Materials Science and Engineering,	William D. Callister Jr. David G. Rethwisch	Wiley, 10 th edition, 2020 ISBN-10 : 1119453917 ISBN-13 : 978-1119453918
3.	Introduction to Materials Science for Engineers, 8e Paperback – 15 March 2020 by (Author)	James F. Shackelford	Pearson Education; 8 th edition, 2020 ISBN-10: 9353941393 ISBN-13: 978-9353941390
4.	Kinetics in Materials Science and Engineering	Dennis W. Readey	CRC Press, 2019 ISBN-10: 0367869837 ISBN-13: 978-036786983
5.	Materials Science and Engineering: Problems with Solutions	Shetty M.N	PHI Learning Private Limited ,2016 ISBN-10 : 8120351096 ISBN-13 : 978-8120351097
6.	Mechanical Behavior of Materials	William F. Hosford	Cambridge University Press; 2 nd edition, 2009 ISBN-10: 0521195691 ISBN-13: 978-0521195690

(b) Online Educational Resources:

- 1. www.sakshat.ac.in/
- 2. www.ironcarbondigram.com/
- 3. www.substech.com/dokuwiki/doku.php?id=iron-carbon_phase_diagram
- 4. http://vimeo.com/32224002
- 5. http://nptel.ac.in/courses/113105024/
- 6. https://www.smartzworld.com/notes/metallurgy-materials-science-notes-pdfmms/
- 7. http://www.uom.ac.mu/faculties/foe/mped/students_corner/notes/enggmaterials/lecturenote s.pdf

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Conference paper
- 2. Journal paper
- 3. Lab Manuals

A) Course Code : 2425303 (T2425303/P2425303/S2425303)

B) Course Title : Strength of Materials for Mechanical Engg. (ME, ME (Auto))

c) Pre- requisite Course(s) : Physics, Engineering Mechanics

D) Rationale :

The effects due to action of force system on a body have already been studied in Physics/Mechanics in previous Semester/Class. Generally, Mechanical/Automobile Engineering components and members are subjected to different loading conditions, resulting into different types of stresses and strains. In this course, estimation of induced stresses and strains of determinate structures/components under action of these transverse, axial, thermal, shear loads, pressure, bending and torsion moment are performed. Moreover, this course will lay sound foundation for analysis and design of mechanical components going to be discussed in latter semesters.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Calculate direct stresses and strains in Mechanical members/components in single load situations.
- **CO-2** Determine bending moment, shear force, slope and deflection in different types of beams/ components subjected to transverse loading
- **CO-3** Calculate bending and shear stresses in different types of beams/components.
- **CO-4** Estimate shear stresses in shafts subjected to twisting moment.
- **CO-5** Calculate Stresses and deflection in helical springs.
- **CO-6** Calculate various stresses in thin pressure vessels.
- **CO-7** Calculate principal stress and strain in machine members subjected to multi-load situations.

F) Suggested Course Articulation Matrix (CAM):

		Programme Outcomes (POs)									
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	3	2	-	3	2	-	1				
CO-2	3	2	-	2	-	-	1				
CO-3	3	2	-	2	-	-	1				
CO-4	3	2	-	2	-	-	1				
CO-5	3	2	-	2	-	-	1				
CO-6	3	2	-	-	-		1				
CO-7	3	2	-	-	-		1				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Caumaa	Course				neme of Stud Hours/Week	-	
Code	Course Course Code Title		room action (1)	Lab Instruction (LI)	Lab Notional Instruction Hours		Total Credits (C)
		L	T				
2425303	Strength of Materials for Mechanical Engg.	03	1	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)		
Course Code		Theory Assessment (TA)		Term Work& Self-Learning Assessment (TWA)		Lab Assessment (LA)		+TWA+LA)
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425303	Strength of Materials for Mechanical Engg.	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425303

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b.	Identify various types of loadings in the given component/member with justification. Identify mechanical components subjected to single load situations. Calculate various elastic moduli in the given situation. Calculate direct stresses and strains in the given determinate component/member subjected to single static longitudinal, shear and thermal loads.	 Unit-1.0 Direct Stresses and Strains in Components Different types of Loads. Mechanical properties of materials like Strength, Stiffness, Hardness, Toughness, Ductility, Malleability, Elasticity, Plasticity. Statically Determinate structures. Direct Stress, Linear Strain, Hook's Law, Stress- Strain curve of ferrous and non-ferrous materials, Modulus of Elasticity, Yield, Proof, Breaking and Ultimate Stress and Factor of safety. Lateral Strain and Poisson's ratio, Relations between different Moduli. Temperature Stresses and Strain with and without yielding. Shear Stress, Shear Strain and Shear Modulus. 	CO1
		1.8 Bulk Modulus and Volumetric Strain	
TSO 2a. TSO 2b. TSO 2c. TSO 3a. TSO 3b.	Identify Mechanical components subjected to bending moment. Draw Shear Force and Bending Moment Diagram for the given Statically Determinate Beam. Identify location of point of contra flexure in the given situation with justification. Determine deflection and slope in a given Statically determinate Beam using given method. Calculate the bending stress in the given beam. Calculate Slope and Deflection in the given beam. Calulate the shear stress behavior in the given beam.	 Unit-2.0 Shear Force, Bending Moment, Slope and Deflection in Beam type Components 2.1 Types of Beams like Cantilever, Simply Supported and Over Hang Beams. 2.2 Relation between Shear Force and Bending Moment. 2.3 Sagging and Hogging Bending Moment and its importance. 2.4 Point of Contra flexure and its importance. 2.5 S.F and B.M Diagram for Cantilever, Simply Supported and Over Hang Beams. 2.6 Slope and Deflection in Cantilever and Simply Supported beams. Unit-3.0 Bending and Shear Stresses in Beam type Components 3.1 Bending Theory, Flexural equation, Bending stress, Bending strain, Sectional Modulus 3.2 Neutral Axis, application of Bending theory to Statically determinate beams. 3.3 Shear stress: Average and Maximum shear stress for rectangular and circular section beams. 	CO2
	Calculate the shear stresses in the given shaft which is subjected to pure twisting moment. Calculate angle of twist and shear train in given solid shaft.	 3.4 Short members subjected to eccentric loading. Unit-4.0 Torsion of Shaft 4.1 Torsion/Twisting Moment, Torsional Equation, Angle of Twist, Polar Moment of Inertia, Torsional Rigidity. 4.2 Torsional Stress and Strain in solid and hollow 	CO4
	Calculate the power transmitted by the given solid and hollow shafts. Select solid and hollow shaft for the given application with justification.	shafts. Comparison between Solid and Hollow Shafts subjected to pure torsion. 4.3 Power Transmitted /Consumed for shaft, spindle and axle of solid and hollow sections subjected to Twisting Moment.	
TSO 5a.	Calculate Stiffness, deflection and maximum stress in the given spring.	Unit-5.0 Stresses and Deflection in Helical Springs 5.1 Definition, types and application of springs.	CO5

Ma	jor Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 5b.	Estimate strain energy for the given axially loaded helical spring.	5.2	Spring classification based on size, shape and load-leaf spring, helical and spiral spring. Stiffness, deflection and maximum stress in helical open and closed coil springs only.	
TSO 6a.	Identify mechanical components subjected to internal/external pressure loading.	Unit	t-6.0 Thin Cylindrical and Spherical Pressure Vessels	CO6
TSO 6b.	Find out various stresses induced in the given thin pressure vessel due to internal/external pressure.	6.1 6.2	Thin cylinders and spheres subjected to internal pressure; Hoop stresses, longitudinal stress and change in volume.	
TSO 7a.	Identify multi-load situations with justifications.	Unit	t-7.0 Principal Stresses	CO7
TSO 7b.	Estimate principal stresses and maximum shear stress for a given combined loading by analytical Approach.	7.1	Multi load situations and need of estimating principal stresses. Definition of principal plane and principal stresses.	
TSO 7c.	Estimate principal stresses and maximum shear stress for a given combined loading by Mohr's circle method.		Expression for normal and tangential stress, maximum shear stress. Stresses on inclined planes.	
		7.5	Position of principal planes and planes of maximum shear. Graphical solution using Mohr's circle of Stresses.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425303

Pract	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2. LSO 1.3.	Use UTM to perform Tensile test. Plot stress-strain curve for a given material under tensile loading. Estimate yield strength, proof stress, ultimate strength, percentage elongation in length, percentage reduction in area.	1.	Perform Tension Test on Mild Steel/ Aluminium on Universal Testing machine as per IS432 (I)	CO1
LSO 1.4.	Use related IS Code			
LSO 2.1. LSO 2.2. LSO 2.3.	Use UTM to perform Compression test. Plot stress-strain curve for a given material under compressive loading. Estimate yield strength, proof stress, ultimate strength, percentage elongation in length, percentage reduction in area. Use related IS Code	2.	Perform Compression test on Cast Iron on Universal Testing Machine as per IS 14858	CO1
LSO 3.1. LSO 3.2. LSO 3.3. LSO 3.4.	Use UTM to perform Shear test. Plot stress-strain curve for a given material under shear loading. Estimate corresponding yield strength, proof stress, and ultimate strength. Use related IS Code	3.	Perform direct Shear Test on Mild Steel using Universal Testing Machine as per IS 5242	CO1

Practi	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 4.1. LSO 4.2.	Identify simply supported end conditions Correlate Young's Modulus of beam material with deflection and area moment of inertia.	4.	Determine Young's Modulus of Elasticity of different materials' beam simply supported at ends.	CO1, CO2
LSO 5.1.	Use Impact machine under Izod and Charpy test situations Identify way to apply impact loading	5.	Calculate Impact Value/Toughness of Mild Steel and Aluminium using Izod and Charpy Impact Test Apparatus as per IS 1757.	CO1
LSO 5.3.	Estimate Toughness of the specimen material. Use related IS Code			
LSO 6.1. LSO 6.2. LSO 6.3.	Use Brinell, Rockwell and Vicker's hardness testers. Perform hardness test. Correlation of different hardness	6.	Perform Brinell, Rockwell and Vicker's hardness test on different metals.	CO1
LSO 7.1. LSO 7.2. LSO 7.3.	values from different tests. Use Combined Shear Force and Bending Moment apparatus. Estimate Bending moment and shear force in beams. Estimate the point of contraflexure.	7.	Estimate Maximum Bending moment and Shear force for simply supported and cantilever beams under point load and UDL using 'Combined Shear Force and Bending Moment' apparatus.	CO2
LSO 8.1. LSO 8.2. LSO 8.3.	Use using 'Slope and Deflection' apparatus Find out Measure flexural rigidity (EI) for a given beam Correlate experimental and analytical values	8.	Measure flexural rigidity (EI) for beam using 'Slope and Deflection' apparatus and compare it with theoretical value.	CO2
LSO 9.1. LSO 9.2. LSO 9.3.	Use using 'Slope and Deflection' apparatus Investigate the effect of beam length and width on deflection of beam Correlate experimental and analytical values	9.	Investigate the effect of beam length and width on deflection of beam and compare it with theoretical value using 'Slope and Deflection' apparatus.	CO2
LSO 10.2.	'Torsion of Bar' apparatus Correlate the angle of twist, length and modulus of Rigidity of a shaft. Use related IS Code	10.	Perform the torsion test on wire/ Rod of different materials using 'Torsion of Bar' apparatus. (Part I) as per IS 1717	CO4
LSO 11.1. LSO 11.2.	Use 'Extension and compression of Spring 'apparatus Estimate Stiffness of the given spring. Correlate the effect of spring deflection and load on strain energy stored.	11.	Measure Stiffness and deflection of given spring and Modulus of Rigidity of the spring wire using 'Extension and compression of Spring'apparatus.	CO5

- L) Suggested Term Work and Self Learning: S2425303 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Collect information about the values of different engineering properties of five standard mechanical engineering materials and present in tabular form.
 - Identify simple mechanical components where single load situation exist.
 - Solve numerical problems related to direct stresses and strains.
 - List out different types of test that can be performed on a UTM.

- Solve numerical problems related to S.F and B.M Diagram for Cantilever, Simply Supported and Over Hang Beams type components.
- Collect information comprising of different mechanical components subjected to bending stresses.
- Prepare a list of machine components where deflection is desirable and non desirable for the functioning.
- Solve problems related to deflection of components under transverse loading.
- Solve numerical problems on simple multi load situations.

b. Micro Projects:

- 1. Prepare a model showing the effects of thermal stresses on prismatic components.
- 2. Prepare an excel sheet to calculate SF and BM in a simply supported beam and cantilever beam.
- 3. Prepare a working model to measure deflection in digital form using sensors/potentiometer/transducers of a cantilever beam with facility to vary the position of a point load.
- 4. Perform internet search to prepare a list of software used to draw and estimate shear force, bending moment and deflection of beams.
- 5. Prepare a model of a shaft to demonstrate relation between length and angle of twist.
- 6. Collect data of three shafts of three different electric motors available in your college like length, diameter and material. Note down the power and speed of the motor and comment on the shaft diameters used.

c. Other Activities:

1. Seminar Topics:

- Different mechanical property testing methods used in industry
- Different types of beams with examples
- Relation between Load, SF, BM, Slope and Deflection
- Application of solid and hollow shafts.
- Different types of Helical springs
- Domestic and industrial thin and thick pressure vessels

2. Visits:

- Visit a nearby industry/workshop to identify and list the various failures in machine components due to direct stresses.
- Visit to automobile service center and tabulate the usage of helical/leaf spring in various automotives Cars/Trucks/Buses.
- Visit institute mechanical workshop and list shafts and their applications in different machines and equipment.

3. Self-Learning Topics:

- Relations between different elastic moduli
- Spherical Pressure vessels
- Deflection in Cantilever beams with point and Uniform Distributed Loads
- Power transmitted by a hollow shaft.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work& Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
CO-1	20%	20%	20%	-	17%	50%	20%	
CO-2	10%	20%	10%	33%	17%	20%	20%	
CO-3	15%	15%	15%	33%	17%	-	20%	
CO-4	15%	15%	15%	34%	17%	15%	20%	
CO-5	10%	10%	10%	-	17%	15%	20%	
CO-6	10%	10%	10%	-	15%	-	-	
CO-7	20%	10%	20%	-	-	-	-	
Total Marks	30	70	20	20	10	20	30	
			50			1		

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- **N)** Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

	Total	Relevant	Total	ETA (Marks)		
Unit Title and Number	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Direct Stresses and Strains in components	10	CO1	14	3	5	6
Unit-2.0 Shear Force, Bending Moment, Slope and Deflection in Beam type components	10	CO2	12	3	3	6
Unit-3.0 Bending and Shear stresses in beam type components	08	CO3	10	3	2	5
Unit-4.0 Torsion of Shaft	06	CO4	10	3	2	5
Unit-5.0 Stresses and Deflection in Helical Springs	04	CO5	08	3	0	5
Unit-6.0 Thin Cylindrical and Spherical Pressure Vessels	04	CO6	08	3	0	5
Unit-7.0 Principal Stresses	06	CO7	08	2	0	6
Total	48		70	20	12	38

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. No.		Dalamant	PLA/ELA			
	Laboratory Practical Titles	Relevant COs	Performance		Viva-	
3. NO.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce	
		Nulliber(s)	(%)	(%)	(%)	
1.	Perform Tension Test on Mild Steel/ Aluminium on Universal Testing machine as per IS432 (I)	CO1	40	50	10	
2.	Perform Compression test on Cast Iron on Universal Testing Machine as per IS 14858	CO1	40	50	10	
3.	Perform direct Shear Test on Mild Steel using Universal Testing Machine as per IS 5242	CO1	40	50	10	
4.	Determine Young's Modulus of Elasticity of different materials' beam simply supported at ends.	CO1, CO2	40	50	10	
5.	Calculate Impact Value/Toughness of Mild Steel and Aluminium using Izod and Charpy Impact Test Apparatus as per IS 1757.	CO1	40	50	10	
6.	Perform Brinell, Rockwell and Vicker's hardness test on different metals.	CO1	40	50	10	
7.	Estimate Maximum Bending moment and Shear force for simply supported and cantilever beams under point load and UDL using 'Combined Shear Force and Bending Moment' apparatus.	CO2	40	50	10	
8.	Measure flexural rigidity (EI) for beam using 'Slope and Deflection' apparatus and compare it with theoretical value.	CO2	40	50	10	
9.	Investigate the effect of beam length and width on deflection of beam and compare it with theoretical value using 'Slope and Deflection' apparatus.	CO2	40	50	10	
10.	Perform the torsion test on wire/Rod of different materials using 'Torsion of Bar' apparatus. (Part I) as per IS 1717	CO4	40	50	10	
11.	Measure Stiffness and deflection of given spring and Modulus of Rigidity of the spring wire using 'Extension and compression of Spring 'apparatus.	CO5	40	50	10	

Legend:

PRA*: Process Assessment
PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	Universal Testing Machine	Universal Testing Machine: Capacity - 40 tones. Type: Mechanical type digital, electrically Operated. Accessories: (1) Tensile test attachment for flat and round specimen up to 32 mm. (2) Compression test attachment (3) Shear test attachment with sizes of bushes (3) Shear test attachment	1,2,3,4,5
2.	Impact Testing Machine (Izod Test)	(4) Two point and three pont bending attachment etc. IZOD Impact Test Apparatus: Pendulum dropangle:90°- 120; Pendulum effective Wt:20-25kg; Striking velocity of pendulum:3-4 m/sec; Pendulum impact energy:168 joule; Min scale graduation:2 Joule.	5
3.	Impact Testing Machine (Charpy Test)	CHARPY Test Apparatus: Pendulum drop angle140°; Pendulum effective Wt 20-25 kg; Strikingvelocityofpendulum5-6m/sec; Pendulum impact energy 300 j; Min scale graduation 2 J; Distance of axis of pendulum rotation from center of specimen to specimen hit by pendulum 815mm.	5
4.	Perform Brinell, Rockwell and Vicker's hardness testers	-	6
5.	Combined Shear Force and Bending Moment apparatus	Combined Shear Force and Bending Moment apparatus	7
6.	Slope and Deflection of Beam Apparatus	A bench mounted apparatus with a steel base with support at ends. The supports can be fitted with knife edges or clamp plates. A steel beam and two load hangers are together with two dial gauges for measuring beam deflections and slopes, Micrometer, Calipers, Scale, Weights and hanger.	8, 9
7.	Torsion Testing Machine	Torsion Testing Machine: Fixed with auto torque select or to regulate torque ranges Contains geared motor to apply torque to specimen through gearbox Attached with autographic recorder for relation between torque and angle of twist Accuracy +1% of the true torque Suitable for: Torsion and Twist test on diverse metal rods and flats, Torque Measurement by pendulum dynamometer system	10
8.	Torsions of bars apparatus	Torsions of bars apparatus: To understand and investigate directly the relationship between the torsional load applied to a round bar and the angular twist produced and how this relationship varies with the beam material and its cross-sectional polar moment of area. Specimens are rigidly held in a clamp fixed to one end of the bench top base frame of the apparatus.	10
9.	Extension and compression of Springs apparatus	The apparatus should be designed to be mounted on a rigid vertical support approximately 1.5 metres above floor level. It is used to test tension springs up to 200 mm in length. The maximum spring diameter is 38mm, Micrometer, Calipers, Scale, Weights and hanger.	11

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Strength of Materials	R.K. Rajput	S. Chand Publishing (6th Edition,
			2015,
			ISBN-13: 978-9385401367
2.	Strength of Materials	Rattan S.S.	McGraw Hill Education; Third
			edition, 2016, ISBN-13: 978-
			9385965517
3.	Strength of Material and Mechanics of	B.C. Punamia	Laxmi Publications (p) Ltd. New
	Structures		Delhi, 10/e, 2015, ISBN-13:978-
			8131809259
4.	Strength of Material	S. Ramamurutham	Dhanpat Rai Publishing Company
			Private Limited-New Delhi; Eighth
			edition, 2014, ISBN-13:978-
			9384378264

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. https://onlinecourses.nptel.ac.in/noc19_ce18/preview
- 3. https://www.coursera.org/learn/mechanics-1
- 4. https://www.coursera.org/courses?query=mechanics%20of%20materials
- 5. en.wikipedia.org/wiki/Shear_and_moment_diagram
- 6. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 7. www.engineerstudent.co.uk/stress_and_strain.html
- 8. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Lab Manuals
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Learning Packages

A) Course Code : 2425304 (T2425304/P2425304/S2425304)

B) Course Title : Basics Thermodynamics (ME, ME (Auto))

C) Pre- requisite Course(s) :
D) Rationale :

Thermodynamics is a branch of science that deals with energy transformations and are primarily concerned with the two forms of energy heat and work. The energy transformations are governed by the various laws of thermodynamics known as zero, first, second and third laws. Applications of thermodynamics can be found in fields of refrigeration and air-conditioning to automobile. Its principles are used to design automobile engines, steam turbines, power plants, HVAC, aircraft and rockets, etc. Thus, every student of Diploma Mechanical Engineering should have a fundamental knowledge of this course.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Assess thermodynamic properties and systems.
- **CO-2** Apply the laws of thermodynamics to the given systems.
- **CO-3** Analyze thermodynamics cycles.
- **CO-4** Quantify the behavior of boiler based on the thermodynamic cycle.
- **CO-5** Analyze processes involving ideal gases and real substances.

F) Suggested Course Articulation Matrix (CAM):

		Programme Outcomes (POs)									
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	3	2	3	-	-	-	-				
CO-2	3	3	2	2	1	2	2				
CO-3	3	3	2	2	2	-	2				
CO-4	3	2	2	2	-	-	-				
CO-5	3	3	2	2	2	2	2				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course				neme of Stud Hours/Week	•	
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
2425304	Basics Thermodynamics	02	01	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	ks)		
Course Title		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2425304	Basics Thermodynamic	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills,

Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425304

Maj	ior Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f. TSO 1g.	Explain thermodynamics & various thermodynamics processes. Analyze heat and work. Draw P-V and T-S diagram of different process. Calculate internal energy and enthalpy. Identify state through properties. Calculate the work done by a closed system Calculate changes in entropy using thermodynamic tables Calculate changes in entropy for ideal gases	 Unit-1.0 Fundamental Concepts of Thermodynamics 1.1 Thermodynamics: Terminology, definition and scope, microscopic and macroscopic approaches, Basic concepts of – State, state point, System, Boundary and Surroundings, 1.2 Identification of a state through properties Thermodynamic properties, their units and classifications. intensive and extensive various property diagrams 1.2 Mechanics definition of work and its limitations, Heat and work, Work done, sign convention, change in internal energy, shange in onthology and extremy. Specific 	CO1
TSO 1i.	calculate absolute and gage pressure, and absolute temperature. calculate changes in kinetic, potential, enthalpy and internal energy.	change in enthalpy and entropy, Specific heats at constant volume and at constant pressure. 1.3 Thermodynamic processes of ideal gases. Isobaric, Isochoric, Isothermal, Adiabatic and polytropic with representation on P-V and T-S diagram. 1.4 General gas equation, Characteristics of gas constant, Mol of gas, Universal gas constant, specific heats of ideal gases. 1.5 Thermodynamic equilibrium, Reversibility and irreversibility, Quasi-static process	
TSO 2b. TSO 2c. TSO 2d. TSO 2e. TSO 2f.	Apply zeroth law of thermodynamics to a given thermodynamic system. Apply first law of thermodynamics to a given thermodynamic system. Calculate thermal efficiency & C.O.P. for a given thermodynamic cycle Apply third law of thermodynamics to a given thermodynamic system Explain Steady flow energy equation and their application Apply second law of thermodynamics to a given thermodynamic system Analyze systems and control volumes through the application of the second law	 Unit-2.0 Law of Thermodynamics 2.1 Zeroth and first law of thermodynamics, Statement of the First law of thermodynamics for a cycle Steady flow energy equation and their application. 2.2 Derivation of the First law of processes, energy, internal energy as a property 2.3 Concept of heat source and heat sink, heat reservoir, heat engine, heat pump and refrigerator 2.4 Statement of the second law of thermodynamics: - Kelvin Planck Statement, Clausius Statement and their equivalence, heat engine, heat pump, refrigerator and simple numerical on thermal efficiency and COP. 2.5 Statement of the third law of thermodynamic 	CO2

Maj	or Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3a.	Describe types of thermodynamics cycle.	Unit-3.0 Thermodynamic Cycles	CO3
TSO 3b.	Draw P-V and T-S diagram of Carnot cycle	3.1 Classifications of thermodynamic cycle.	
TSO 3c.	Calculate thermal efficiency of Carnot cycle.	3.2 Carnot cycle and its representation on P-V and T-S diagram.	
TSO 3d.	Draw P-V and T-S diagram of cycle and Brayton cycle.	3.3 Derivation of thermal efficiency of Carnot cycle and simple numerical based on it.	
	Calculate air standard efficiency of different cycle	3.4 Concept of air standard efficiency of Otto, Diesel, and Brayton cycle (Without	
TSO 3f.	thermodynamic cycles.	derivation), representation on P-V & T-S diagram.	
	Describe steam and their phases.	Unit-4.0 Properties of Steam and Steam Power	CO4
TSO 4b.	Calculate dryness fraction and degree of superheat.	4.1 Formation of steam, various phases like wet steam, dry saturated Steam,	
TSO 4c.	Calculate enthalpy of steam using steam table.	superheated steam.	
TSO 4d.	Explain given type of boiler, mountings and their accessories.	4.2 Dryness fraction, degree of superheat, sensible heat, Latent heat, calculation of enthalpy of wet, dry saturated &	
TSO 4e.	Identify different components of given	superheated steam using steam table.	
700 70	boiler	4.3 Steam boilers: Classification, Construction and working of Cochran, Babcock and Wilcox, Lamont and Loeffler boiler. Mountings – Bourdon Pressure Gauge,	
		Safety valves, Water level Indicator and fusible Plug. Accessories – Economizer, super heater and air pre-heater.	
TSO.5a	Sketch P-v, T-v, and P-T plots for steam, R-134a, and ideal gases.	Unit-5.0 Pure Substances, Ideal & Real Gases Ideal and perfect gases	CO5
TSO.5b	Locate data states on P-v, T-v, and P-T plots for steam, R-134a, and ideal gases	5.1 Differences between perfect, ideal and real gases, equation of state, evaluation of properties of perfect and ideal gases.	
TSO.5c	Apply the concept of the generalized compressibility factor to determine the state of a gas	5.2 Real Gases: Introduction. Vander Waal's Equation of state, Van der Waal's constants	
TSO.5d	Apply the ideal gas equation to solve problems involving pressure, temperature, and volume of ideal gases	in terms of critical properties, law of corresponding states, compressibility factor, compressibility chart	
TSO.5e	Analyze processes involving ideal gases and real substances as working fluids in both closed systems and open systems	Pure Substances 5.3 Definition of a pure substance, phase of a substance, triple point and critical points,	
TSO.5f	Determine the properties of pure substances using thermodynamic tables	sub-cooled liquid, saturated liquid, vapor pressure, two-phase mixture of liquid and	
TSO.5g	Calculate changes in entropy using thermodynamic tables.	vapor, saturated vapor and superheated vapor states of a pure substance	
TSO.5h	Calculate changes in entropy for ideal gases	5.4 Representation of pure substance properties on p-T and p-V diagrams, detailed treatment of properties of steam for industrial and scientific use	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425304

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. Use of thermometer and pressure	1.	Calibrate thermometers and pressure gauges	CO1
gauge.	2.	Compare the accuracy and characteristics response of the different types of thermometers.	CO1
	3.	Determine the pressure with a bourdon tube pressure gauge	CO1
	4.	Determine the pressure with different pressure measuring devices and then compare the measured values	CO1
LSO 2.1. Use working models of petrol engine/ diesel engine	5.	Use model of cross-sectional view of given petrol engine to identify different parts and components of the engine	CO2
	6.	Use model of cross-sectional view of given diesel engine to identify different parts and components of the engine	CO2
LSO 2.2. Use heat pump	7.	Determine the power input, power output as well coefficient of performance of heat pump	CO2
LSO 2.3. Use steam turbine	8.	Operate impulse and reaction steam turbines.	CO2
	9.	Determine power output & efficiency of a steam turbine	CO2
	10.	Determination of steam flow rate of a steam turbine	CO2
LSO 2.4. Use condenser	11.	Find the efficiency of the given condenser	CO2
LSO 3.1. Use steam engine	12.	Determine the brake power of a single cylinder steam engine with varying load	CO3
LSO 3.2. Use heat Engine	13.	Investigate the first law and Second law of thermodynamic using heat Engine	CO3
LSO 4.1. Use separating and throttling calorimeter	14.	Find dryness fraction of steam by separating and throttling calorimeter.	CO4
LSO 4.2. Use working models of different types of boilers.	15.	Identify low pressure boilers and their accessories and mountings.	CO4
	16.	Identify high pressure boilers and their accessories and mountings.	CO4
	17.	Prepare heat balance sheet for given boiler.	CO4
	18.	Investigate the relationship between pressure and temperature of saturated steam.	CO4
	19.	Carry out fault finding on Boiler control demonstration unit.	CO4
LSO 4.3. Use air-Water-Steam Heat Exchanger	20.	Determine the mean temperature difference between two mediums in both contra and parallel flow using air-Water-Steam Heat Exchanger	CO5
	21.	Plot the temperature difference curves for a variety of flow conditions using air-Water-Steam Heat Exchanger	CO5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 4.4. Use indicator unit	22.	Use indicator unit to draw the PV diagram of a piston side and piston rod side.	CO5

- L) Suggested Term Work and Self Learning: S2425304 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Draw P-V and T-S diagram of dual cycle.
 - Derive formula of thermal efficiency of otto cycle.
 - Differentiate between diesel cycle and otto cycle on the basis of compression ratio and same higher pressure.
 - Differentiate between water tube boiler and fire tube boiler on basis of pressure.

b. Micro project:

- Prepare report on different thermal equipment in your home where law of thermodynamics is applicable.
- Prepare report on application of boiler principle equipment like pressure cooker, geyser etc.
- Prepare report on effect of compression ratio on Otto and Diesel cycle.
- Prepare model of boiler mounting and accessories.

c. Other Activities:

- 1. Seminar Topics:
 - Heat engine
 - Steam Boiler
 - Heat exchanger

2. Visits:

- Visit nearby thermal power plant and prepare a detail report on the basis of given criteria
- Visit nearby automobile service station and prepare a detail report on the basis of given criteria.
- 3. Self-Learning Topics:
 - Properties of a System
 - Heat pumps
 - Entropy
 - Enthalpy
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

		Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assess	ment (LA)#			
	Progressive	End Theory	Term \	Term Work & Self Learning						
	Theory	Assessment	Assessment			Duograsius Lab	Fud Laboratory			
	Assessment	(ETA)				Progressive Lab	End Laboratory Assessment			
COs	(PTA)		Assignments	Assignments Micro Other		Assessment				
	Class/Mid			Projects	Activities*	(PLA)	(ELA)			
	Sem Test									

				50			
Total Marks	30	70	20	20	10	20	30
CO-5	20%	20%	20%	25%	34%	20%	20%
CO-4	20%	20%	20%	25%	33%	20%	20%
CO-3	25%	25%	25%	25%	33%	25%	20%
CO-2	20%	20%	20%	25%	-	20%	20%
CO-1	15%	15%	15%	-	-	15%	20%

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

	Total				ETA (Marks)	
Unit Title and Number	Classroom Instruction (CI) Hours	Relevant COs Number(s)	Total Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Fundamental Concepts of Thermodynamics	8	CO1	12	4	4	4
Unit-2.0 Law of Thermodynamics	9	CO2	15	4	5	6
Unit-3.0 Thermodynamic cycles	10	CO3	15	4	5	6
Unit-4.0 Properties of Steam and Steam Power	12	CO4	15	4	5	6
Unit-5.0 Pure Substances, Ideal & Real Gases	9	CO5	13	4	4	5
Total	48	-	70	20	23	27

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S. No.	Laboratory Practical Titles	Relevant COs	Perfor	Viva-	
3. NO.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
		rtainber(s)	(%)	(%)	(%)
1.	Calibrate of Thermometers and pressure gauges	CO1	30	60	10
2.	Compare the accuracy and characteristics response of the different types of thermometers.	CO1	40	50	10
3.	Determine the pressure with a bourdon tube pressure gauge	CO1	40	50	10
4.	Determine the pressure with different pressure measuring devices and then compare the measured values	CO1	40	50	10
5.	Use model of cross-sectional view of given petrol engine to identify different parts and components of the engine	CO2	30	60	10
6.	Use model of cross-sectional view of given diesel engine to identify different parts and components of the engine	CO2	40	50	10

		D.L.	PLA/ELA				
S No	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-		
S. No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce		
		Number(s)	(%)	(%)	(%)		
7.	Determine the power input, power output as well coefficient of performance of heat pump	CO2	40	50	10		
8.	Operate impulse and reaction steam turbines.	CO2	40	50	10		
9.	Determine power output & efficiency of a steam turbine	CO2	40	50	10		
10.	Determination of steam flow rate of a steam turbine	CO2	40	50	10		
11.	Find the efficiency of the given condenser	CO2	40	50	10		
12.	Determine the brake power of a single cylinder steam engine with varying load	CO3	40	50	10		
13.	Investigate the first law and Second law of thermodynamic using heat Engine	CO3	40	50	10		
14.	Find dryness fraction of steam by using separating and throttling calorimeter.	CO4	40	50	10		
15.	Identify low pressure boilers and their accessories and mountings.	CO4	40	50	10		
16.	Identify high pressure boilers and their accessories and mountings.	CO4	40	50	10		
17.	Prepare heat balance sheet for given boiler.	CO4	40	50	10		
18.	Investigate the relationship between pressure and temperature of saturated steam.	CO4	40	50	10		
19.	Carry out fault finding on Boiler control demonstration unit.	CO4	40	50	10		
20.	Determine the mean temperature difference between two mediums in both contra and parallel flow using air-Water-Steam Heat Exchanger	CO5	40	50	10		
21.	Plot the temperature difference curves for a variety of flow conditions using air-Water-Steam Heat Exchanger	CO5	40	50	10		
22.	Use indicator unit to draw the PV diagram of a piston side and piston rod side.	CO5	40	50	10		

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	Thermometer and pressure gauges of different types	300 mm (+10% variation is acceptable). Length of main scale: 180mm±10% Scale smallest division: shall not be more than 0.5 degree centigrade. Bulb length: Shall not be less than 10mm and shall not greater than 25mm. Stem diameter: Shall not be less than 5.5mm and shall not greater than 8mm.	1-4
2.	Petrol engine	Single cylinder, 4 stroke, air cooled ,110 cc, fuel-petrol Computerized Engine Test Rigs	5
3.	Diesel engine	Single cylinder, 4 stroke, air cooled ,110 cc, fuel-diesel Computerized Engine Test Rigs	6
4.	Heat pump	Heat pump should have 60° C to 70° C hot water COP of at least 3.6 at 15°C wet bulb ambient, air to water type to heat water to a constant 60°C at condensing temperature at or below 55°C, robust casing manufactured from 304 or 316 stainless steel, The heat pump unit shall be complete with independent compressor circuit where more than one (1) compressor is utilized, evaporation coil shall be aluminum on copper tube, axial fans, primary water circulation pump, check valves, gate valves, gauges and automatic control system Heat pump should be a 3PH, 380V, 36KW	7
5.	Steam turbine	Steam Turbine Test Rig	8,9,10
6.	Condenser	Working models of Jet condenser, Surface condenser	11
7.	Steam engine	Working models Steam engine	12
8.	Heat Engine	Working models Heat Engine	13
9.	Separating and throttling calorimeter	Separating Calorimeter: lagged with glass wool and cladded with aluminum and should have gauge column, pressure gauge, stop cock & needle valve Throttling Calorimeter: lagged with glass wool and cladded with aluminum, brass orifice and should have cased thermometer, manometer, valve, etc. Boiler Unit- mini boiler unit approx. 5ltr capacity producing steam of 2 -4 kg max. fitted with 2kW heater, Pressure gauge, safety valve and glass tube water level indicator.	14
10.	Different types of Boilers	Working model of Cochran, Lancashire Boiler, Babcock & Wilcox Boiler	15-19
11.	Boiler mounting and accessories	Working models of water level indicator, safety valve Fusible plug, pressure gauge, stop valve, feed check valve, 7. blow off cock, manhole and mud box Accessories- super heater, economizer, air preheater	15-19

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
12.	Heat Exchanger	Shell & tube heat exchanger, Fin tube heat exchanger	20-21
13.	Indicator unit	Piston indicator, Balanced diaphragm type indicator, Electronic indicator, Optical indicator	22

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Engineering Thermodynamics	James Ambrose Moyer	Maxwell Press,2022
			ISBN-10: 9355282001
			ISBN-13: 9355282002-978
2.	Engineering Thermodynamics	R.K. Singal	Dreamtech Press, 2020
		Mridul Singal	ISBN-10: 9389698669 ,
		Rishi Singal	ISBN-13: 9389698664-978
3.	Heat and Mass Transfer -	Yunus A. Cengel	McGraw Hill, Ed.6 th
	Fundamentals and Applications	Afshin J. Ghajar	ISBN-10: 9390185289
			ISBN-13: 9390185283-978
4.	Thermodynamics an engineering	Yunus A. Cengel	McGraw Hill Education India, 2019
	approach	Michael A. Boles	ISBN: 9789353165741, 9353165741
		Mehmet Kanoglu	
5.	Applications of Thermodynamics	V. Kadambi	Wiley, 2019
		T. R. Seetharam	ISBN-10 : 8126571241
		K. B. Subramanya Kumar	ISBN-13: 978-8126571246
6.	Basic and applied thermodynamics	P.K. Nag	McGraw Hill Education india, Ed.2 nd
			2017, ISBN:
			9780070151314,9780070151314
7.	Thermal Engineering	R.S. Khurmi	S Chand, 2020
			ISBN-10: 9788121925730
			ISBN-13: 978-8121925730
8.	A course in Thermal Engineering	Domkundwar,	Dhanpat Rai and company, 2017
		Kothandaraman	ASIN: BOB5KRKDHS

(b) Online Educational Resources:

- 1. https://www.youtube.com/watch?v=gG9mzVV9FYA&list=PL9RcWoqXmzaK6AHCCyL_J6gqc0 2RN-w-D
- 2. https://www.youtube.com/watch?v=9GMBpZZtjXM&list=PLD8E646BAB3366BC8
- 3. https://www.youtube.com/watch?v=ZTpnJZu1IQw&list=PLiSPNzs4fD9snxh0jHSuk3HuqoMh W24VO
- 4. https://archive.nptel.ac.in/courses/112/108/112108148/
- 5. https://archive.nptel.ac.in/courses/112/108/112108149/

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Conference paper
- 2. Journal paper
- 3. Lab Manuals

A) Course Code : 2425305 (P2425305/S2425305)

B) Course Title : Computer Aided Drafting and Modelling (ME, ME (Auto))

C) Pre- requisite Course(s) : Engineering Drawing

D) Rationale

With the emergence of computer-aided drafting and design (CAD) tools the traditional engineering drawing practices has undergone significant change as the emphasis has shifted from drawing board-based engineering practices to Computer aided based drafting and modeling which has the advantages of speed, modification, storage and convenience of drawing complex 2D and 3D entities. This course makes them able to use computer aided drafting and design software for developing 2D & 3D digital entities, Digital engineering drawings and Assemblies related to different fields. The goal of this course is to make the student proficient in the most up-to-date drafting, solid modeling and assembly practices through providing them with handson experience.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Use Computer Aided Drafting software to draw simple and complex 2D geometric entities.
- **CO-2** Use Computer Aided Drafting software to draw orthographic and isometric projections.
- **CO-3** Use Computer Aided Design Software to model 3D components and assemblies.
- **CO-4** Use Computer Aided Design Software to create engineering drawings of machine components and assemblies.

F) Suggested Course Articulation Matrix (CAM):

		Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	3	1	1	2		
CO-2	3	-	1	3	1	1	2		
CO-3	3	1	1	3	-	1	2		
CO-4	3	ı	-	3	-	1	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	T						
2425305	Computer Aided Drafting and Modelling	-		04	02	06	03		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

ode			As	sessment So	heme (Mar	ks)		
		Theory Ass (TA		Term Work& Self-Learning Assessment (TWA)		Lab Assess	+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425305	Computer Aided Drafting and Modelling	-	-	20	30	20	30	100

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
	Use the given computer aided drafting software for creating the institute Drawing Template. Use drawing commands to create the given	 Unit-1.0 Basic Computer Aided Drafting 1.1 Various Software for Computer Aided Drafting and Computer Aided Design. 1.2 Basics of AutoCAD or any other drafting 	CO1
TSO 1c.	simple 2D geometry. Apply drawing aids, coordinate system, selection methods, and templates to create the given drawing quickly and precisely. Use the given computer aided drafting software for creating the given simple 2D entity.	software—interface, screen layout, starting commands from menus, command line. 1.3 Coordinate system, Angular measurements, Point specification. 1.4 Drawing aids - Grid, Snap, Ortho, Osnap, Units, Limits, Layers, Linetype. 1.5 Opening and Saving drawing files. 1.6 Creating User Defined Templates. 1.7 Methods of Selecting and deleting Objects. 1.8 Undo and Redo. 1.9 Creating basic drawings objects - lines, arc, circles, ellipses, polyline and polygons.	
TSO 2a.	Use modifying commands to create the given complex 2D entity.	Unit-2.0 Advanced Computer Aided Drafting	CO1
TSO 2b.	Use hatching, text and dimensioning, tolerance and formatting commands to make the given complex 2D drawings.	2.1 Modify 2D entities: Erase, Trim, Extend, Copy, Move, Mirror, Offset, Fillet, Chamfer, Array, Rotate, Scale, Lengthen, Stretch, Break, Divide, Exploded and Block, Hatch etc.	
TSO 2c.	Use layers and blocks to handle complex 2D drawings.	2.2 Text and Dimensioning, Dimensional	
	Use the given computer aided drafting software for creating the given complex 2D entity. Print the given drawing (using institute template) on A4/A3 sheet.	tolerances and Geometrical tolerances. 2.3 Formatting commands- Line weight, Color, Line type, Dimension style. 2.4 Controlling Drawing display. 2.5 Layers: concept and application. 2.6 Printing and plotting of drawings- Paper space, Model space, creating table, Plot commands.	
TSO 3a.	Use the given computer aided drafting software for creating orthographic views of	Unit-3.0 Application of Computer Aided Drafting	CO1, CO2
TSO 3b.	the given object. Use the given computer aided drafting software for creating isometric views of the given object.	 3.1 Drawing orthographic views using drafting software with principles mentioned in 'Engineering Drawing' Course. 3.2 Drawing isometric views using drafting software with principles mentioned in 'Engineering Drawing' Course. 	
TSO 4a.	Explain solid modeling, surface modeling and assembly operation in the available	Unit-4.0 Computer Aided Design Software- Working in 2D Environment	CO3
TSO 4b.	CAD software. Use the given computer aided Design software to create 2D entities with constraints and parametric relations.	4.1 Introduction, features, and applications of different software packages used for solid modeling. System requirement & compatibility with other software.	
		4.2 Working in Sketcher mode - Line, Profile, Circle, Arc, curves, Rectangle, and their sub options.	
		4.3 Constraints-Dimensioning constraint, Geometrical constraint.	

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number(s)
TSO 5a.	Create the given 3D model (part) using the given commands and parametric relations.	Uni	t-5.0 Computer Aided Design Software-Solid Modeling and Assembly	CO3
TSO 5b.	Describe the procedure to use 3D modify commands to edit the given 3D Model.	5.1	Introduction to Computer Aided Design Software and different modules.	
TSO 5c.	Create assembly of the given 3D solid (Part) models using the CAD software.	5.2	Working in 3D environment	
TSO 5d.	Modify the given assembly using the CAD software.	5.3	Creating 3D Solid Models of simple and complex machine parts using Extrude, Revolve, Sweep, variable section sweep,	
TSO 5e.	Describe the procedure to use explode command for the given assembly.		Draft, loft, Blend, creating reference planes, points and lines, and similar 3D commands.	
		5.4	Part editing tool: Trim, Extend, Erase, Mirror, Chamfer, Round, Copy, Move, Draft, Boolean operations, Patterns, etc.	
		5.5	Parametric and non parametric modeling-concept, differences and illustration.	
		5.6	Preparation of assemblies using assembly commands. Introduction to Top down and Bottom-up approach of assembly	
		5.7	Exploded view: Explode the assembly.	
TSO 5f.	Describe the procedure to generate 2D drawings of the given part models and assembly using the CAD software.		t-6.0 Drafting and Plotting using Computer Aided Design Software	CO4
TSO 6a.	Plot production drawing as per the given dimensions, parts and assemblies.	6.1	Generate orthographic projections from already available Part Models and Assemblies. All types of views – front view, top view, side view, sectional views, isometric views, auxiliary views.	
		6.2	Dimensioning Commands – Apply dimensions, dimensional and geometrical tolerances.	
		6.3	Preparation of Assembly drawing using assembly features.	
		6.4	Working in Drafting Mode.	
		6.5	Bill of material – Prepare part list table and name plate.	
		6.6	Page set up, Plot command.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425305

Practica	al/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Use the given Computer aided Drafting software. Draw standard 2D entities using Draw commands.	1.	Use the Computer Aided Drafting software to draw following simple 2-D entities using Draw commands • Draw circle and arcs with different geometric conditions and constraints (two problems). • Draw polygons (Triangle, square, pentagon, hexagon, heptagon) (Three problems).	CO1
LSO 2.1.	Customize the given Computer aided drafting software as per requirements. Use readymade templates to draw 2D entities.	2.	 Use customization tool bar of CADr software to customize main window and to do interfacing. Use existing standard 2D drawing templates. 	CO1
LSO 3.1.	Use the given Computer aided Drafting software to create template as per requirement. Insert already prepared 2D entities in the template using modify commands	3.	Prepare a template for your institute of A-4 size with title block and institute logo using the Computer Aided Drafting software.	CO1
LSO 4.1.	Estimate areas and perimeters of regular and complex 2D entities using software.	4.	Use the Computer Aided Drafting software to estimate Area, Perimeter, and Centroid for the given 2D entities like Circle, Pentagon, Trapezium, hexagon and 2D entity with arcs and spline curves using 'Enquiry' and 'List' commands.	CO1
LSO 5.1.	Draw conic sections using software. Draw popular engineering curves for engineering applications.	5.	Use the Computer Aided Drafting software to draw: Ellipse and parabola Epicycloid and Hypocycloid curves using pitch circle as directing circle of a cycloidal gear and an appropriate size smaller circle as generating circle Involute of a circle	CO1
LSO 6.1.	Use various Draw, Edit and Modify commands to create complex 2D entities.	6.	Use the Computer Aided Drafting software to draw four complex 2D entities assigned by the teacher using Draw, Edit and Modify commands	CO1
LSO 7.1.	Use Computer aided Drafting software to create and modify 2D entities. Use computer aided drafting software to create and modify the given orthographic views.	7.	Use the Computer Aided Drafting software to draw Orthographic projections of following using first angle method: • A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P • A frustum of a hexagonal is placed in first quadrant with its axis perpendicular to H.P. and parallel to V.P • Different objects having cylindrical surfaces, ribs.	CO2
LSO 8.1.	Use computer aided drafting software to create and modify the given orthographic views of mechanical components.	8.	Use the software to draw Orthographic projections of following using first angle method: • Front and side view of V-Groove Pulley • Front view of 2-Wheeler Piston • Front view of typical Open-Ended Spanner • Front view of Connecting Rod (similar objects can be taken up)	CO2

Practica	I/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 9.1.	Use dimensional and Geometric tolerance and text to the given 2D drawing.	9.	Apply geometrical tolerance, dimensional tolerance and text to the drawing drawn under Sr. No. 6 to 8.	CO1
LSO 10.1.	Use of layer to handle complex 2D entities.	10.	Use the software to draw sectional view of piston of a two-wheeler. Main drawing of Piston in one layer, hatching in another layer and dimensioning and text in third layer	CO1
LSO 11.1.	Use computer aided drafting software to create and modify the given isometric entities.	11.	Use the software to draw isometric views of three 3D objects containing lines, arcs, circles, holes, ribs and slots	CO2
	Visualize the 3D shape of the given object. Convert the given 2D figures/views into isometric	12.	Convert the orthographic views of an object to isometric view (Two problems)	CO2
LSO 13.1.	Print drawing on A4 and A3 papers with dimensions and text.	13.	Print any three drawings from above list along with the template of institute prepared.	CO1
LSO 14.2.	Use the given Computer Aided Design (CAD) Software Customize the given CAD Software Create simple 3D parts models	14.	 Customize main window and interface of the 3D modeling software using customization tool bar. Create given simple part models using commands like Extrude, Revolve, Shell etc.; 	CO3
LSO 15.1.	using the given CAD Software Create Complex 3D parts models using the given CAD Software	15.	Create the given complex 3D part model(s) using advanced commands like Sweep, Variable Section Sweep, Blend, Draft, Mirror, Chamfer, Fillet, Rib, Pattern etc.	CO3
LSO 16.1.	Create Simple mechanical 3D parts models using the given CAD Software	16.	Develop following mechanical components: Stepped shaft Muff coupling Hexagonal nut Hexagonal bolt Cast Iron Pulley	CO3
LSO 17.1.	Create mechanical 3D parts models and assemblies using the given CAD Software	17.	Develop following mechanical components and assemblies: Cotter joint Flange coupling Screw jack Tool Post Bench vice Plummer Block Drill Jig (OR any six similar components)	CO3
LSO 18.1.	Print Production drawings related o mechanical components and assemblies using the given CAD software.	18.	 Print orthographic views (regular and sectioned) of the solid models developed under Sr. No. 16 Print drawing of the solid models developed Sr. No. 16 Print drawing of the assembly developed Sr. No. 17 with Bill of Materials. 	CO4

Suggested Term Work and Self Learning: S2425305 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- 1. Differentiate Parametric and Non parametric modeling approaches with example.
- 2. List sketch-based commands available in any parametric CAD software.
- 3. List feature-based commands available in any parametric CAD software.
- 4. Explain the procedure of creating and inserting 'Blocks' in AutoCAD software.
- 5. Explain the procedure of modeling a Ball bearing and Helical Gear using any parametric CAD software.
- 6. Explain the procedure of modeling open coil helical spring using any parametric CAD software.
- 7. Draw Front and Top views of Hexagonal bolt in AutoCAD and convert it into blocks. Insert copies of these blocks in other AutoCAD files.
- 8. Each student should explain at least one problem for construction and method of drawing/modeling in computer to all batch colleagues. Teacher will assign the problem to be explained to each student batch.
- 9. Each student will assess at least one 2D digital drawing/part model of other students (May be a group of 5-6 students identified by teacher can be taken) and will note down the mistakes committed by them. Student will also guide the students for correcting the mistakes, if any.

b. Micro Projects:

- 1. Prepare an A4 digital drawing template of your institute with title block and institute logo.
- 2. Download 5 videos on shortcuts used in AutoCAD, watch them and write a report to detail out the steps involved, Commands used.
- 3. Each student will identify a small assembly from the institute workshop/laboratory (e.g. Bench vice, Machine vice, Tool post, Couplings, Joints, Ball/Roller Bearings, Gears, Mouse, Motor casing etc.) Or any items like White Board Marker pen, TV Remote, 3 pin electrical Top of charger, Tooth Brush etc. Specify the material and try to find out mass of the complete assembly/object.
- 4. Develop 3D model and complete assembly of 'computer mouse' you are using, specify the material and try to find out mass of the complete assembly.
- 5. Down load already prepared solid models and modify them.

c. Other Activities:

- 1. Seminar Topics:
 - Commercially available other Computer Aided Drafting Software
 - Compatibility of AutoCAD drawings compared to Conventional Drawing
 - Commercially available other Computer Aided Design Software
 - Effective use of Layers in AutoCAD
 - Surface Modelling
 - Parametric Modelling
- 2. Visits: Collect production/construction/circuit drawings from nearby industries/shop/builders and develop 2D digital drawing and 3D model of any of the component.
- 3. Self-Learning Topics:
 - Arrays in AutoCAD
 - Blocks in AutoCAD
 - Modelling of threaded components
 - Modelling of Spur Gear
 - Modelling of Ball Bearing.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA)#					
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work& Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment				
203	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)				
CO-1	-	-	25%	25%	25%	30%	25%				
CO-2	-	-	25%	25%	25%	20%	25%				
CO-3	-	-	25%	25%	25%	40%	25%				
CO-4	-	-	25%	25%	25%	10%	25%				
Total	-	-	20 20 10			20	30				
Marks				50							

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested AssessmentTable for Laboratory (Practical):

		Dolovont	PLA/ELA			
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-	
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce	
		realiser(3)	(%)	(%)	(%)	
1.	Use the Computer Aided Drafting software to draw following simple 2-D	CO1	30	60	10	
	entities using Draw commands					
	 Draw circle and arcs with different geometric conditions and constraints (two problems). 					
	 Draw polygons (Triangle, square, pentagon, hexagon, heptagon) (Three problems). 					
2.	 Use customization tool bar of CADr software to customize main window and to do interfacing. 	CO1	30	60	10	
	 Use existing standard 2D drawing templates. 					
3.	Prepare a template for your institute of A-4 size with title block and	CO1	30	60	10	
	institute logo using the Computer Aided Drafting software.					
4.	Use the Computer Aided Drafting software to estimate Area, Perimeter, and Centroid for the given 2D entities like Circle, Pentagon, Trapezium, hexagon and 2D entity with arcs and spline curves using 'Enquiry' and 'List' commands.	CO1	30	60	10	
5.	Use the Computer Aided Drafting software to draw:	CO1	30	60	10	
	Ellipse and parabola					
	Epicycloid and Hypocycloid curves using pitch circle as directing					
	circle of a cycloidal gear and an appropriate size smaller circle as					
	generating circle					
	Involute of a circle					

		Dolovont	PLA/ELA			
S.	Laboratory Practical Titles	Relevant COs		mance	Viva-	
No.	Edbordeory Fractical Titles	Number(s)	PRA*	PDA**	Voce	
_			(%)	(%)	(%)	
6.	Use the Computer Aided Drafting software to draw four complex 2D entities assigned by the teacher using Draw, Edit and Modify commands	CO1	30	60	10	
7.	Use the Computer Aided Drafting software to draw Orthographic projections of following using first angle method:	CO2	30	60	10	
	 A pentagonal pyramid is placed in first quadrant with its axis parallel to H.P. and V.P 					
	 A frustum of a hexagonal is placed in first quadrant with its axis perpendicular to H.P. and parallel to V.P 					
8.	Different objects having cylindrical surfaces, ribs. Heather software to draw Orthographic projections of following using	CO2	30	60	10	
٥.	Use the software to draw Orthographic projections of following using first angle method:	CO2	30	60	10	
	Front and side view of V-Groove Pulley					
	Front view of 2-Wheeler Piston					
	Front view of typical Open-Ended Spanner					
	Front view of Connecting Rod					
	(similar objects can be taken up)	601	40	F0	10	
9.	Apply geometrical tolerance, dimensional tolerance and text to the drawing drawn under Sr. No. 6 to 8.	CO1	40	50	10	
10.	Use the software to draw sectional view of piston of a two-wheeler. Main drawing of Piston in one layer, hatching in another layer and dimensioning and text in third layer	CO1	40	50	10	
11.	Use the software to draw isometric views of three 3D objects containing lines, arcs, circles, holes, ribs and slots	CO2	40	50	10	
12.	Convert the orthographic views of an object to isometric view (Two problems)	CO2	40	50	10	
13.	Print any three drawings from above list along with the template of institute prepared.	CO1	40	50	10	
14.	Customize main window and interface of the 3D modeling software using customization tool bar.	CO3	40	50	10	
	 Create given simple part models using commands like Extrude, Revolve, Shell etc.; 					
15.	Create the given complex 3D part model(s) using advanced commands like Sweep, Variable Section Sweep, Blend, Draft, Mirror, Chamfer, Fillet,	CO3	40	50	10	
16.	Rib, Pattern etc. Develop following mechanical components:	CO3	40	50	10	
10.	Stepped shaft	603	40	30	10	
	Muff coupling					
	Hexagonal nut					
	Hexagonal bolt					
47	Cast Iron Pulley	603	40	50	10	
17.	Develop following mechanical components and assemblies:Cotter joint	CO3	40	50	10	
	Flange coupling					
	Screw jack					
	Tool Post					
	Bench vice					
	Plummer Block					
	Drill Jig (OR and a incitation and analyses)					
10	(OR any six similar components) Print orthographic views (regular and sectioned) of the solid models.	CO4	40	EO	10	
18.	Print orthographic views (regular and sectioned) of the solid models developed under Sr. No. 16 Print production developed and Sr. No. 16	CO4	40	50	10	
	 Print production drawing of the solid models developed Sr. No. 16 Print production drawing of the assembly developed Sr. No. 17 with Bill of Materials 					
	of Materials.			<u> </u>		

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	Computer aided drafting software like AutoCAD	Latest educational licensed network version	1 to 13
2.	Computer Aided Design Software like CATIA, CREO, NX, Solid works etc.	Latest educational licensed network version	14 to 18
3.	CAD workstations	latest configuration Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
4.	Interactive board (165 x 130 cm)	Supports dual touch, dual write and intuitive gestures, such as toss, rotate and zoom, available with multitouch operating systems, such as Windows®	All
5.	Sample production/ construction drawings	From nearby industries, construction companies and developed by senior teachers of the state	All
6.	Printer/plotter	A4/A3 size	13, 18
7.	Models for projection and demonstration	Wooden models	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Engineering Graphics with AutoCAD	A.K. Sarkar, A.P. Rastogi, D.M. Kulkarni	PHI Learning Private Limited-New Delhi (2010); ISBN: 978-8120337831.
2.	Computer Aided Drafting & Modelling Lab	K.Venugopal	Scitech Publications (India) Pvt Ltd, ISBN-10 : 8183714366
3.	Engineering Graphics	S. K. Pradhan K.K. Jain	Khanna Book Publishing Company Pvt. Ltd., New Delhi ASIN: B0BM5BMMXT ISBN-10: 9355381891 ISBN-13: 978-9355381897
4.	Catia V5r16 for Designers	Sham Tickoo	CADCIM Technologies, USA (2006) ISBN-10 : 1932709185 ISBN-13 : 978-1932709186

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
5.	Creo Parametric 9.0 for Designers	Sham Tickoo	CADCIM Technologies, USA 9 th ed, 978-1-64057-163-1
8.	NX 9.0 for Designers	Sham Tickoo	BPB Publications, (2017) ISBN-10: 9386551225 ISBN-13: 978-9386551221

(b) Online Educational Resources:

Scales: https://youtu.be/YSEZu3Ch26k
 Dimensioning: https://youtu.be/_OSY04TnIEM
 Simple Orthographic Projections: https://youtu.be/DW7dpKdxVrA
 Orthographic Projections of objects with slant and curved surfaces: https://youtu.be/dCWjBvZBpjM
 Illustrative Example: https://youtu.be/MR5de9EC940

Illustrative Example: https://youtu.be/MR5de9EC940
 Illustrative Example: https://youtu.be/mahh-WONNHA
 Isometric Projection of 3D objects: https://youtu.be/0K-5URiyi50

Isometric Projection-Object with slant surfaces: https://youtu.be/qSPJOiXKv98
 Isometric Projection-Object with curved surfaces: https://youtu.be/qSPJOiXKv98
 Missing lines and missing views: https://nptel.ac.in/courses/105/104/105104148/

11. Launching AutoCAD and Opening drawing: https://youtu.be/aoo-t0-gEfw

12. AutoCAD Main Screen: https://youtu.be/D0YyEiCjwpk 13. **Draw and Modify Toolbars:** https://youtu.be/T_RN_RBFk7o 14. Illustrative Example-1: https://youtu.be/_Bheo9MzeVk 15. https://youtu.be/ZguZZVjxaek Block creation: Rectangular and Polar array: https://youtu.be/YgYZgbrUJ_M 16. 17. Illustrative Example-2: Array: https://youtu.be/yJf_IsWX4gM 18. Dimensioning: https://youtu.be/sEiRsi14u0U 19. Use of layers: https://youtu.be/fdQqNdDtOI8

21. https://www.inc.com/encyclopedia/computer-aided-design-cad-and-computer-aided-cam.html

https://youtu.be/AU-Vsd2T0DA

- 22. https://all3dp.com/2/surface-modeling-cad-simply-explained/
- 23. http://www.dm.unibo.it/~casciola/html/research_ssm.html
- 24. https://www.youtube.com/watch?v=WY0YuCkJWdw
- 25. https://www.youtube.com/watch?v=OIYrkF Fld8

Illustrative Example 3: Flywheel:

- 26. https://www.youtube.com/watch?v=zoMW_usjaJo
- 27. https://www.youtube.com/watch?v=fx6kt9djlpc
- 28. https://www.youtube.com/watcAh?v=8wdOIHxICxw
- 29. https://www.youtube.com/watch?v=srnm--IKtl4
- 30. https://www.youtube.com/watch?v=rtjDfZXscrI

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

20.

- 1. Bureau of Indian Standards, Engineering Drawing Practice for Schools and Colleges IS: SP-46, BIS, Government of India, Third Reprint, October 1998; ISBN: 81-7061-091-2.
- 2. AutoCAD e manual
- 3. Already prepared Production Drawings

A) Course Code : 2425306 (P2425306/S2425306)

B) Course Title : Summer Internship -I (Common For all Programmes)

C) Pre- requisite Course(s) :
D) Rationale :

Diploma students are required to give exposure of their own diploma programme related industrial hardware, software and practices, just after completing one semester, so that they can correlate this industrial exposure with the concept being taught in the branch specific specialized engineering courses in forthcoming semesters. Mentors/Coordinators/ Teachers need to map the academic contents of the programme of study with the activities of this industrial exposure and are advised to follow the 'Whole to Part' approach to make the students aware about the potential industry's expected outcomes & setup ('Whole') from the diploma programme – and then teaching the related concepts ('Part') of the same in subsequent semesters. In this way before actually being exposed to academic input specific to diploma programmes, the students need to be sent to the nearby/local industries and also may be advised to explore information related to their programme of study using different sources related to potential employment opportunities of both wage and self-employment, job function, job position, nearby relevant industries and so on.

The summer internship will provide the direction to the students and also help in mind mapping to plan their futuristic course of action, after passing the diploma. This would also bridge the gap between their virtual imagination about the outcome of the programme and real happenings related to the diploma programme.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Comprehend the practices of identified industry or world of work related to diploma engineering programme of study.
- **CO-2** Map real equipment, processes, product, management, operations etc. to the course of study through various glimpses of input, process and output in different type of industries.
- **CO-3** Identify the probable enterprises /startups for futuristic planning and self-growth.
- **CO-4** Identify the probable job function and job position in their relevant programme of study.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes		Progra Spe Outco (PS	cific mes*						
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	2			4	and Environment		4		
	3	-	-	1	-	-	1		
CO-2	3	-	-	1	-	-	1		
CO-3	3	-	-	-	1	-	2		•
CO-4	3	-	-	-	1	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Title	Course Title Classroon Instructio (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2425306	Summer Internship -I	-	-	02	02	04	02		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Assessment Scheme (Marks)						
	Course Title	Theory Assessment (TA)		Self-Le Asses	Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		
Course Code		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)	
2425306	Summer Internship -I	-	-	10	15	10	15	50	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Suggested Instructional/Implementation Strategies: Mentors/ Coordinators/ Teachers need to plan and implement the summer internship in their respective programme as per the outcome expected from the programme. However, in general, summer internship would help in exploring and exposing the student to the below mentioned dimensions of the world of work. These dimensions can further be explored in depth as per the need and advancement in respective programmes in later stages. Mentors/Coordinators/ Teachers need to map the academic contents of the programme of study with the activities of this industrial exposure and are advised to follow the whole to part approach to make the students aware about the

potential industry's expected outcomes & setup ('Whole') from the specific diploma programme and then teaching the related concepts ('Part') of the same in subsequent semesters.

- Industrial Layout
- Organizational Structure
- Corporate Communications
- · Strategic, Rolling and Developmental plans
- Maintenance Procedures
- Inventory Control and Management System
- Purchase and Store Procedures
- Major Machinery, Tools, Equipment, Devices, Software, Control System etc.
- · Product Development, Manufacturing, Packaging and Delivery
- Project Management
- Operation and Maintenance
- Warehouse Management
- Assembly Line
- Quality Assurance and Testing Cell
- Process/ Software Development/ Fabrication/ Construction Work Management
- Testing and Quality Assurance Practices
- Total quality management
- Calliberation and Certification practices
- Safety Practices
- Industrial Acts
- Industrial Grievances
- Behavioural Aspects
- Conduction of Meetings and Discussions
- Sales and Marketing Strategies
- Forecasting and Target Setting
- Production Planning and Control
- Storage Retrieved and Material handling Practices
- Automation and Control Facilities
- Enterprise Resource Planning (ERP)
- Supply Chain
- Customer Satisfaction Strategies
- Finance and Accounts
- Research and Development
- Promotion and Capacity Building Schemes
- · Reduce, Reuse and Recycling Efforts and Policies
- Recognitions and Rewards
- After Sale Services
- Promotional Avenues
- Social Corporate responsibilities

J) Assessment of Summer Internship -I

S. No.	Criteria of Assessment	% of Weightage					
1.	Maintaining the log book after having exposure to different types of industry/ world of work	15%					
2.	Preparing the list of job functions and job positions of relevant programme	20%					
3.	Identify the probable enterprise/ startup for futuristic planning	15%					
4.	Report writing of summer internship as per the prescribed format	30%					
5.	Presentation of Report	20%					
	Total						

Note: S. no. 1 to 3 shall be considered for progressive assessment. While S. No. 4 & 5 shall be considered for end term assessment

A) Course Code : 2400207 (T2400207 / S2400207)

B) Course Title : Indian Constitution (Common for all Programmes)

C) Pre- requisite Course(s) :
D) Rationale :

This course will focus on the basic structure and operative dimensions of Indian Constitution. It will explore various aspects of the Indian political and legal system from a historical perspective highlighting the various events that led to the making of the Indian Constitution. The Constitution of India is the supreme law of India. The document lays down the framework demarcating the fundamental political code, structure, procedures, powers, and sets out fundamental rights, directive principles, and the duties of citizens. The course on constitution of India highlights key features of Indian Constitution that makes the students a responsible citizen. In this online course, we shall make an effort to understand the history of our constitution, the Constituent Assembly, the drafting of the constitution, the preamble of the constitution that defines the destination that we want to reach through our constitution, the fundamental right constitution guarantees through the great rights revolution, the relationship between fundamental rights and fundamental duties, the futurist goals of the constitution as incorporated in directive principles and the relationship between fundamental rights and directive principles.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course out comes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Enumerate salient features and characteristics of the constitution of India.
- **CO-2** Follow fundamental rights and duties as responsible citizen and engineer of the country.
- **CO-3** Analyze major constitutional amendments in the constitution.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes			Programme Specific Outcomes* (PSOs)						
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	1	-	-	-	2	-	-		
CO-2	1	-	-	-	2	-	-		
CO-3	1	2	-	-	2	-	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400207	Indian Constitution	01	-	-	-	01	01		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture(L), Tutorial(T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	ks)			
	Course Title	Theory Assessment (TA)		Self-Le Asses	Work & earning sment VA)	Lab Assessment (LA)		(TA+TWA+LA)	
Course Code		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
2400207	Indian Constitution	25	-	25	-	-	-	50	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400207

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. Explain the meaning of preamble of the constitution. TSO 1b. List the salient features of constitution. TSO 1c. List the characteristics of constitution.	 Unit-1.0 Constitution and Preamble 1.1 Meaning of the constitution of India. 1.2 Historical perspective of the Constitution of India. 1.3 Salient features and characteristics of the Constitution of India. 1.4 Preamble to the Constitution of India. 	CO1
TSO 2a. Enlist the fundamental rights. TSO 2b. Identify fundamental duties in general and in particular with engineering field. TSO 2c. identify situations where directive principles prevail over fundamental rights.	Unit-2.0 Fundamental Rights and Directive Principles 2.1 Fundamental Rights under Part-III. 2.2 Fundamental duties and their significance. 2.3 Relevance of Directive Principles of State Policy under part-IV.	CO2
TSO 3a. Enlist the constitutional amendments. TSO 3b. Analyze the purposes of various amendments.	 Unit-3.0 Governance and Amendments 3.1 Amendment of the Constitutional Powers and Procedure 3.2 Major Constitutional Amendment procedure - 42nd, 44th, 74th, 76th, 86th and 91st 	CO3

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- **L)** Suggested Term Work and Self Learning: S2400207 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Role of Media in Spreading Awareness regarding Fundamental Rights
- 2. Analysis of Situations where directive principle of State policy has prevailed over Fundamental rights
- 3. Analyze 42nd and 97th Amendment of Indian Constitution

c. Other Activities:

- 1. Seminar Topics:
- Democracy and Political Participation in India
- Situations where directive principles prevail over fundamental rights.
- 2. Visits:
 - Arrange Mock Parliament.
- 3. Design games and simulation on emergencies declared in last thirty years.

- 4. Group discussions on current print articles.
 - Adoption of Article 365 in India.
 - Need of amendments in the constitution.
- 5. Prepare collage/posters on current constitutional issues.
 - Emergencies declared in India
 - Seven fundamental rights
- 6. Cases: Suggestive cases for usage in teaching:

Case	Relevance
A.K. Gopalan Case (1950)	SC contented that there was no violation of Fundamental Rights enshrined in Articles 13, 19, 21 and 22 under the provisions of the Preventive Detention Act, if the detention was as per the procedure established by law. Here, the SC took a narrow view of Article 21.
Shankari Prasad Case (1951)	This case dealt with the amendability of Fundamental Rights (the First Amendment's validity was challenged). The SC contended that the Parliament's power to amend under Article 368 also includes the power to amend the Fundamental Rights guaranteed in Part III of the Constitution.
Minerva Mills case (1980)	This case again strengthens the Basic Structure doctrine. The judgement struck down 2 changes made to the Constitution by the 42nd Amendment Act 1976, declaring them to violate the basic structure. The judgement makes it clear that the Constitution, and not the Parliament is supreme.
Maneka Gandhi	A main issue in this case was whether the right to go abroad is a part of the
case (1978)	Right to Personal Liberty under Article 21. The SC held that it is included in the Right to Personal Liberty. The SC also ruled that the mere existence of an enabling law was not enough to restrain personal liberty. Such a law must also be "just, fair and reasonable."

7. Self-Learning Topics:

- Parts of the constitution and a brief discussion of each part.
- Right to education.
- Right to equality.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix		
	Theory Asses	sment (TA)**	Term Wo	ork Assessm	nent (TWA)	Lab Assess	ment (LA)#
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Work & Self Assessmer	U	Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignments	Assignments Micro Other			(ELA)
	Sem Test			Projects	Activities*		
CO-1	30%	-	30%	-	-	-	-
CO-2	40%	-	40%	50%	50%	-	-
CO-3	30%		30%	50%	50%		
Total	25	-	5	10	10	-	-
Marks				25]	

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
 #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

Semester - III

- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)
- O) Suggested AssessmentTable for Laboratory (Practical): (Not Applicable)
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.
- Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	The Constitution of India	P.M. Bakshi	Universal Law Publishing, New Delhi 15th edition, 2018, ISBN: 9386515105
2.	Introduction to Indian Constitution	D.D. Basu	Lexis Nexis Publisher, New Delhi, 2015, ISBN:935143446X
3.	Introduction to Constitution of India	B. K. Sharma	PHI, New Delhi, 6thedition, 2011, ISBN:8120344197
4.	The Constitution of India	B.L. Fadia	Sahitya Bhawan, Agra, 2017, ISBN:8193413768
5.	The Constitutional Law of India	Durga Das Basu	LexisNexis Butterworths Wadhwa, Nagpur 978-81-8038-426-4

(b) Online Educational Resources:

- 1. https://www.coursera.org/learn/principles-of-management
- 2. http://www.legislative.gov.in/constitution-of-india
- 3. https://en.wikipedia.org/wiki/Constitution of India
- 4. https://www.india.gov.in/my-government/constitution-india
- 5. https://eci.gov.in/about/about-eci/the-setup-r1/
- 6. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of-india/
- 7. https://main.sci.gov.in/constitution
- 8. https://nios.ac.in/media/documents/srsec317newE/317EL8.pdf
- 9. https://legalaffairs.gov.in/sites/default/files/chapter%203.pdf

- 10. https://www.concourt.am/armenian/legal_resources/world_constitutions/constit/india/india-e.htm
- 11. https://constitutionnet.org/vl/item/basic-structure-indian-constitution

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

A) Course Code : 2400108 (T2400108)

B) Course Title : Essence of Indian Knowledge System and Tradition

(Common for all Programmes)

C) Pre- requisite Course(s) :

D) Rationale :

This course will survey the basic structure and operative dimensions of Indian knowledge system. With the new education policy-NEP 2020 focusing on Indian Knowledge Systems (IKS) and Traditions of India. This course introduces the learners to the rich and varied knowledge traditions of India from antiquity to the present. This also helps the learner to know and understand their own systems and traditions which are imperative for any real development and progress. Also, it helps the learner to think independently and originally adopting Indian frameworks and models for solving the problems related to world of work where the student is supposed to perform.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course out comes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Identify the rich heritage and legacy residing in our Indian Knowledge systems.
- **CO-2** Correlate the technological & philosophical concepts of IKS with engineering domain specific problems and local problems for finding out possible solutions.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes		Spe Outco	Programme Specific Outcomes* (PSOs)						
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	2	-	-	-	1	1	1		
CO-2	1	2	2	-	3	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Teaching & Learning Scheme:

Course	Course			Scheme of Study (Hours/Week)					
Course Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400108	Essence of Indian Knowledge System and Tradition	01	-	-	-	01	01		

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture(L), Tutorial(T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits= (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Marl	ks)		
			sessment A)	Self-Le Asses	Work& earning sment VA)	Lab Assess (LA)	ment	+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400108	Essence of Indian Knowledge System and Tradition	25	-	-	-	-	-	25

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro

projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400108

Major	Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. Lis TSO 1c. Co TSO 1d. Ide IKS	Aplain the architecture of the Ancient dian Knowledge Systems. Set the salient features of IKS. Comprehend the given IKS model. Entify the role and relevance of the given S model in contemporary society. Alist the importance of Veda, Vedanga,	Unit-1.0 Introduction to Indian Knowledge Systems 1.1 Overview of IKS 1.2 Organization of IKS – चतुर्दश-विद्यास्थानं 1.3 Conception and Constitution of Knowledge in Indian Tradition 1.4 The Oral Tradition 1.5 Models and Strategies of IKS Unit-2.0 Overview of IKS Domains and Relevance in	CO1, CO2
TSO 2b. De TSO 2c. Ide do Edi TSO 2d. Co	saya, Siksaka. escribe the given IKS domain. entify elements of mentioned IKS omains that are relevant to Technical ducation System. orrelate the elements of mentioned IKS omains with given engineering domain.	 Current Technical Education System. 2.1 The Vedas as the basis of IKS 2.2 Overview of all the six Vedāṅgas 2.3 Relevance of following IKS domains in present Technical Education System: Arthashastra (Indian economics and political systems) Ganita and Jyamiti (Indian Mathematics, Astronomy and Geometry Rasayana (Indian Chemical Sciences) Ayurveda (Indian Biological Sciences / Diet & Nutrition) Jyotish Vidya (Observational astronomy and calendar systems) Prakriti Vidya (Indian system of Terrestrial/ Material Sciences/ Ecology and Atmospheric Sciences) Vastu Vidya (Indian system of Aesthetics-Iconography and built-environment /Architecture) Nyaya Shastra (Indian systems of Social Ethics, Logic and Law) Shilpa and Natya Shastra (Indian Classical Arts: Performing and Fine Arts) Sankhya and Yoga Darshna (Indian psychology, Yoga and consciousness studies) Vrikshayurveda (Plant Science / Sustainable agriculture/food preservation methods) 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

L) Suggested Term Work and Self Learning: Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Write a report on any IKS domain highlighting the correlation with one domain specific engineering course.

c. Other Activities:

- 1. Seminar Topics: discuss any one IKS domain in details a highlighting the eminent works in the area.
- 2. Visits:
 - Visit any nearby ancient temple and corelate the geomatical, Shilpa and Vaastu on IKS dimensions specified in each domain.
- 3. Self-Learning Topics:
 - Sustainable practices adopted in ancient India that can be applied for current engineering situations.
- **M)** Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix		
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assess	ment (LA)#
COs Progressive Theory Assessment (PTA)		End Theory Assessment (ETA)	Term Work & Self Learning Assessment		Progressive Lab End Laborato Assessment Assessmen		
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)
CO-1	-	-	-		-	-	-
CO-2	100%	-	-			-	-
Total Marks	25	-	-	-	-	-	-

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentages given are approximate.
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)
- O) Suggested AssessmentTable for Laboratory (Practical): (Not Applicable)
- **P)** Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved

Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Indian Knowledge System: Concepts and Applications	Archak, K.B. (2012).	Kaveri Books, New Delhi
2.	Introduction to Indian Knowledge System: Concepts and Applications	Mahadevan, B. Bhat, Vinayak Rajat Nagendra Pavana R.N.	PHI, ISBN: 9789391818203
3.	Glimpse into Kautilya's Arthashastra	Ramachandrudu P. (2010)	Sanskrit Academy, Hyderabad
4.	"Introduction" in Studies in Epics and Purāṇas, (Eds.)	KM Munshi and N Chandrashekara Aiyer	Bhartiya Vidya Bhavan

(b) Online Educational Resources:

- 1. http://bhavana.org.in
- www.academia.edu/23254393/Science_in_Ancient_India_-_an_educational_module
- 3. www.academia.edu/23305766/Technology_in_Ancient_India_-_Michel_Danino
- 4. www.hamsi.org.nz/http://insaindia.res.in/journals/ijhs.php
- 5. www.niscair.res.in/sciencecommunication/ResearchJournals/rejour/ijtk/ijtk0.asp
- 6. www-history.mcs.st-andrews.ac.uk/Indexes/Indians.html

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Swami Harshananda. "A bird's eye view of vedas". R K Math. Bangalore.,http://rkmathbangalore.org/Books/ABirdsEyeViewOfTheVedas.pdf.
- 2. Sanskrit Prosody, https://en.wikipedia.org/wiki/Sanskrit_prosody.
- 3. Vartak, P.V. (1995). "Veda and Jyotish," Part II, Chapter 2, in Issues in Veda and Astrology, H Pandya (Ed.), pp 65 73.
- 4. Sundaram, A.V. (1995). "Astrology: Its usefulness and Limitations in ModernTimes", Part II, Chapter 9, in Issues in Veda and Astrology, H Pandya (Ed.), pp 129 135.
- 5. Archak, K.B. (2012), "The Vedāṅga Literature", Chapter VIII in Essentials of Vedic Literature, Kaveri Books, New Delhi, pp 330 391.
- 6. Vasant Lad (1996), "Ayurveda: A Brief Introduction and Guide", (whole article).

A) Course Code : 2400110 (T2400110)

B) Course Title : Community/ Society Development

(AIML, AE, CSE, ELX (R), CHE, EE, ME, ME (Auto), MIE, FTS, CACDDM, FPP)

C) Pre- requisite Course(s) :

D) Rationale :

Community development is a process in which community members collectively generate solutions to common problems/concerns for improvement in the quality of life of the people. The course in community and society development is essential so that students can be prepared for taking up activities for the welfare and social well-being of the community and society around them. This course has been designed to develop requisite competencies and skills in students so that they can address social problems, develop sustainable solutions that are tailored to local needs and resources, engage with local communities and civil society organizations to promote people's participation in decision-making and accountability, and apply them to community development.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Identify the issues and problems faced by local communities/societies that can be addressed through community development schemes for sustainable development.
- **CO-2** Prepare an action plan for an identified issue under community development scheme for a selected area.

F) Suggested Course Articulation Matrix (CAM):

		Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	1	1	3	2	2		
CO-2	3	2	1	1	3	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Teaching & Learning Scheme:

	Scheme of Study						
Course		(Hours/Week)					
Course Title		Instruction CI)	Notional Hours (TW/ Activities+ SL)	Total Total Hours Credits			
	L	Т		(CI+TW/ Activities)	(C)		

^{*} PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional.

Community/ Society	01			01	01
Development	01	-	-	01	01

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
Code	Course Title	Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Co		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA-
2400110	Community / Society Development	25	-	-	-	-	-	25

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars,

micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400110

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 1a.	Explain the concept of to Community/Society in Indian Context	Unit-1.0 Community and Society Development Framework	CO1
TSO 1c.	Explain the concept of Rural and Urban Society Differentiate between Rural and Urban Societies. Differentiate between Underdevelopment and development. Describe the different components of community development	 Concept of Community/Society Development Difference between Rural and Urban Societies Characteristics of Underdevelopment and development Components of Community Development 	
TSO 2a.	Prepare a brief report on Community Development Programmes in India considering the given criteria	Unit-2 Community Development Initiatives 2.1 Community Development Programmes in	CO1, CO2
TSO 2b.	Prepare a brief report on institutions engaged in community development programmes considering the given criteria	India-Historical perspective 2.2 Institutions Engaged in Community Development Programmes	
TSO 2c.	Explain the framework of sustainable community development	2.3 Contemporary Community Development Initiatives.2.4 Sustainable Community Development	
TSO 3a.	Explain Role of Technical Intuitions in	Unit-3.0 Community Development Schemes	CO3, CO4
TSO 3b.	Community/Society development. Summarise the activities undertaken by technical institutions under community development through polytechnic scheme Prepare a plan for undertaking project to support Unnat Bharat Abhiyan	 3.1 Role of polytechnics in Community development. 3.2 Scheme of Community Development through Polytechnics 3.3 Unnat Bharat Abhiyan 	

Note: One major TSO may require more than one Theory session/Period.

- **K)** Suggested Term Work/ Activities and Self Learning: Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Specific assignments will be given to students for preparing report on community development programmes and institutions engaged in community development programmes.

b. Micro Projects:

- 1. Suggest solution for flowing water near a water source.
- 2. Identify locally available construction materials in a village.
- 3. Suggest a plan for disposal of solid waste in a village.
- 4. Prepare a plan for use of solar light equipments at streets and public places.

c. Other Activities:

- 1. Seminar Topics:
 - Issues of development for a village near to the institution.
 - Activities to be undertaken by the polytechnic in a village.
 - Characteristics of Development and underdevelopment.

- 2. Visits: Visit to nearby village may be arranged and students may be asked to prepare list of development activities in different Discipline.
- 3. Self-Learning Topics:
 - Community Development programmes in India after independence.
 - Schemes of GOI for Community /society Development.
- L) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.
- M) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

N) Suggested Learning Resources:

(a) Books and Reports:

S.	Titles	Author(s)	Publisher and Edition with ISBN	
No.				
1.	Module on Rural Development: Indian Context	IGNOU, New Delhi	Published by IGNOU, New Delhi	
2.	Module on Rural Development Programmes	IGNOU, New Delhi	Published by IGNOU, New Delhi	
3.	Module on Rural development planning and management	IGNOU, New Delhi	Published by IGNOU, New Delhi	
4.	India's Developing Villages	G R Madan	Allied Publishers, 1990	
5.	Five year plans, Plan Documents, Policy and Reports	Planning Commission of India publications	Planning Commission of India	
6.	Scheme of Community Development through Polytechnics	Ministry of Human Resourse Development, Shastri Bhavan ,New Delhi	Ministry of Human Resourse Development, Govt of India, New Delhi	

- (b) Online Edu
- (c) cational Resources:
- https://www.google.co.in/books/edition/Rural_Development/hABduOX-XgC?hl=en&gbpv=1&dq=rural+development+latest+books&printsec=frontcover
- 2. https://www.india.gov.in/my-government/documents/plan-document
- 3. https://www.india.gov.in/website-planning-commission

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Project Reports Available in the office of CEO, Zila Parishad of the District.
- 2. Schemes of various departments of Bihar Government for Community/Social Development
